ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 8 of 8
Up
Ukr. Bot. J. 2025, 82(6): 594–603
https://doi.org/10.15407/ukrbotj82.06.594
Biotechnology, Physiology and Biochemistry

Biotransformation of 2,6-dichloroaniline and 3,5-dichloroaniline by the mycelium of basidiomycetes

Bondaruk S.V.1,2, Bulava S.O.3, Korzh R.A.2, Lesyk D.S.2,3, Polovynko V.V.2, Fedyk A.V.2,3, Al-Maali G.A.1,2
Abstract

Dichloroanilines are actively used in the synthesis of drugs and pesticides; however, these compounds have been found to exhibit toxic activity. This study aimed to investigate the ability of the mycelium of Fomitopsis pinicola, Ganoderma tsugae, Pleurotus ostreatus, and Schizophyllum commune to biotransform two compounds of dichloroanilines under controlled conditions. The results indicate that the biodegradation rates of the studied compounds ranged from 83.95% to 99.85%. The highest percentage was recorded for G. tsugae 2566, whereas the lowest percentage was observed for both studied strains of S. commune. Five metabolites were identified during the biotransformation of 3,5-dichloroaniline: 3,5-dichloronitrobenzene, 3,5-dichloroacetanilide, 3,5-dichlorophenol, 2-amino-4,6-dichlorophenol, and 4-amino-2,6-dichlorophenol. Three of these metabolites were found for the first time after biotransformation of the studied compounds by fungal mycelium. This is the first report on 4-amino-3,5-dichlorophenol obtained as a result of biotransformation of 2,6-dichloroaniline by fungal mycelium.

Supplementary Material. Supplementary Materials (S1–S3) are available on this website: ukrbotj82-06-594-S1.pdf (78 KB), ukrbotj82-06-594-S2.pdf (84 KB), ukrbotj82-06-594-S3.pdf (269 KB)

Keywords: acetylation, aminodichlorophenol, biodegradation, chromatography, filamentous fungi, xenobiotic

Full text: PDF (Eng) 380K

References
  1. Angioi S., Polati S., Roz M., Rinaudo C., Gianotti V., Gennaro M.C. 2005. Sorption studies of chloroanilines on kaolinite and montmorillonite. Environmental Pollution, 134(1): 35–43. https://doi.org/10.1016/j.envpol.2004.07.018
  2. Argese E., Bettiol C., Agnoli F., Zambon A., Mazzola M., Ghirardini A.V. 2001. Assessment of chloroaniline toxicity by the submitochondrial particle assay. Environmental Toxicology and Chemistry, 20(4): 826–832. https://doi.org/10.1002/etc.5620200418
  3. Bisko N., Lomberg M., Mykchaylova O., Mytropolska N. 2024. IBK Mushroom Culture Collection. Version 1.7. The IBK Mushroom Culture Collection of the M.G. Kholodny Institute of Botany. In: GBIF occurrence dataset. Available at: https://ukraine.ipt.gbif.no/resource?r=ibk&v=1.8 (Accessed 15 June 2025).
  4. Castillo J.M., Nogales R., Romero E. 2014. Biodegradation of 3,4-dichloroaniline by fungal isolated from the preconditioning phase of winery wastes subjected to vermicomposting. Journal of Hazardous Materials, 267: 119–127. https://doi.org/10.1016/j.jhazmat.2013.12.052
  5. Chan Ho Tong L., Dairou J., Bui L.-C., Bouillon J., Rodrigues-Lima F., Dupret J.-M., Silar P. 2015. Screen for soil fungi highly resistant to dichloroaniline uncovers mostly Fusarium species. Fungal Genetics and Biology, 81: 82–87. https://doi.org/10.1016/j.fgb.2015.05.011
  6. Chang H.C., Holland R., Bumpus J.A., Churchwell M.I., Doerge D.R. 1999. Inactivation of Coprinus cinereus peroxidase by 4-chloroaniline during turnover: comparison with horseradish peroxidase and bovine lactoperoxidase. Chemico-Biological Interactions, 123(3): 197–217. https://doi.org/10.1016/S0009-2797(99)00136-2
  7. Chen N., Chen L., Cheng Y., Zhao K., Wu X., Xian Y. 2015. Molecularly imprinted polymer grafted graphene for simultaneous electrochemical sensing of 4.4-methylene diphenylamine and aniline by differential pulse voltammetry. Talanta, 132: 155–61. https://doi.org/10.1016/j.talanta.2014.09.008
  8. Cocaign A., Bui L.C., Silar P., Chan Ho Tong L., Busi F., Lamouri A., Mougin C., Rodrigues-Lima F., Dupret J.M., Dairou J. 2013. Biotransformation of Trichoderma spp. and their tolerance to aromatic amines, a major class of pollutants. Applied and Environmental Microbiology, 79(15): 4719–4726. https://doi.org/10.1128/AEM.00989-13
  9. Cooksey C., Dronsfield A. 2009. Fuchsine or magenta: the second most famous aniline dye. A short memoir on the 150th anniversary of the first commercial production of this well known dye. Biotechnic & Histochemistry, 84(4): 179–183. https://doi.org/10.1080/10520290903081401
  10. D'Annibale A., Ricci M., Leonardi V., Quaratino D., Mincione E., Petruccioli M. 2005. Degradation of aromatic hydrocarbons by white-rot fungi in a historically contaminated soil. Biotechnology and Bioengineering, 90(6): 723–731. https://doi.org/10.1002/bit.20461
  11. Droulia F.E., Kati V., Giannopolitis C.N. 2011. Sorption of 3,4-dichloroaniline on four contrasting Greek agricultural soils and the effect of liming. Journal of Environmental Science and Health, Part B, 46(5): 404–410. https://doi.org/10.1080/03601234.2011.572506
  12. Emtiazi G., Satarii M., Mazaherion F. 2001. The utilization of aniline, chlorinated aniline, and aniline blue as the only source of nitrogen by fungi in water. Water Research, 35(5): 1219–1224. https://doi.org/10.1016/S0043-1354(00)00370-5
  13. Hejtmancik M., Trela B.A., Kurtz P.J., Persing R.L., Ryan M.J., Yarrington J.T., Chhabra R.S. 2002. Comparative gavage subchronic toxicity studies of o-chloroaniline and m-chloroaniline in F344 rats and B6C3F1 mice. Toxicological Sciences, 69(1): 234–243. https://doi.org/10.1093/toxsci/69.1.234
  14. Hernik D., Szczepańska E., Brenna E., Patejuk K., Olejniczak T., Strzała T., Boratyński F. 2023. Trametes hirsuta as an attractive biocatalyst for the preparative scale biotransformation of isosafrole into piperonal. Molecules, 28(8): 3643. https://doi.org/10.3390/molecules28083643
  15. Kremer S., Sterner O. 1996. Metabolism of 3,4-dichloroaniline by the basidiomycete Filoboletus species TA9054. Journal of Agricultural and Food Chemistry, 44(4): 1155–1159. https://doi.org/10.1021/jf950539u
  16. Lindh C.H., Littorin M., Amilon Å., Jönsson B.A.G. 2007. Analysis of 3,5-dichloroaniline as a biomarker of vinclozolin and iprodione in human urine using liquid chromatography/triple quadrupole mass spectrometry. Rapid Communications in Mass Spectrometry, 21(4): 536–542. https://doi.org/10.1002/rcm.2866
  17. Lo H.-H., Brown P.I., Rankin G.O. 1990. Acute nephrotoxicity induced by isomeric dichloroanilines in Fischer 344 rats. Toxicology, 63(2): 215–231. https://doi.org/10.1016/0300-483X(90)90044-H
  18. Martins M., Rodrigues-Lima F., Dairou J., Lamouri A., Malagnac F., Silar P., Dupret J.-M. 2009. An acetyltransferase conferring tolerance to toxic aromatic amine chemicals: molecular and functional studies. Journal of Biological Chemistry, 284: 18726–18733. https://doi.org/10.1074/jbc.M109.015230
  19. Morgan P., Lewis S.T., Watkinson R.J. 1991. Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Applied Microbiology and Biotechnology, 34(5): 693–696. https://doi.org/10.1007/BF00167925
  20. Mori T., Sudo S., Kawagishi H., Hirai H. 2018. Biodegradation of diuron in artificially contaminated water and seawater by wood colonized with the white-rot fungus Trametes versicolor. Journal of Wood Science, 64: 690–696. https://doi.org/10.1007/s10086-018-1740-x
  21. Padmanabhan J., Parthasarathi R., Subramanian V., Chattaraj P.K. 2006. Theoretical study on the complete series of chloroanilines. The Journal of Physical Chemistry, 110(32): 9900–9907. https://doi.org/10.1021/jp061436p
  22. Racine C.R., Ferguson T., Preston D., Ward D., Ball J., Anestis D., Valentovic M., Rankin G.O. 2016. The role of biotransformation and oxidative stress in 3,5-dichloroaniline (3,5-DCA) induced nephrotoxicity in isolated renal cortical cells from male Fischer 344 rats. Toxicology, 341–343: 47–55. https://doi.org/10.1016/j.tox.2016.01.006
  23. Rankin G.O., Racine C.R., Valentovic M.A., Anestis D.K. 2021. Nephrotoxic potential of putative 3,5-dichloroaniline (3,5-DCA) metabolites and biotransformation of 3,5-DCA in isolated kidney cells from Fischer 344 rats. International Journal of Molecular Sciences, 22(1): 292. https://doi.org/10.3390/ijms22010292
  24. Rodrigues A.D., Dos Santos Montanholi A., Shimabukuro A.A., Yonekawa M.K.A., Cassemiro N.S., Silva D.B., Marchetti C.R., Weirich C.E., Beatriz A., Zanoelo F.F., Marques M.R., Giannesi G.C., das Neves S.C., Oliveira R.J., Ruller R., de Lima D.P., Dos Anjos Dos Santos E. 2023. N-acetylation of toxic aromatic amines by fungi: Strain screening, cytotoxicity and genotoxicity evaluation, and application in bioremediation of 3,4-dichloroaniline. Journal of Hazardous Materials, 41: 129887. https://doi.org/10.1016/j.jhazmat.2022.129887
  25. Sandermann H.Jr., Heller W., Hertkorn N., Hoque E., Pieper D., Winkler R. 1998. A new intermediate in the mineralization of 3,4-dichloroaniline by the white rot fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 64(9): 3305–3312. https://doi.org/10.1128/AEM.64.9.3305-3312.1998
  26. Sarker A., Lee S.-H., Kwak S.-Y., Nandi R., Kim J.-E. 2020. Comparative catalytic degradation of a metabolite 3,5-dichloroaniline derived from dicarboximide fungicide by laccase and MnO2 mediators. Ecotoxicology and Environmental Safety, 196: 110561. https://doi.org/10.1016/j.ecoenv.2020.110561
  27. Shaalan R.A., Belal T.S. 2013. Validated stability-indicating HPLC-DAD method for the simultaneous determination of diclofenac sodium and diflunisal in their combined dosage form. Scientia Pharmaceutica, 81(3): 713–731. https://doi.org/10.3797/scipharm.1301-24
  28. Shailakshi, Tees R., D’souza G., Kumari M.S., Pinto G.M., Priya. 2024. A comparative study of green and conventional synthesis of schiff base and its metal complexes from 3,5-dichloroaniline and 3-chloro-4 fluroaniline. International Research Journal on Advanced Engineering and Management, 2(7): 2323–2327. https://doi.org/10.47392/IRJAEM.2024.0336
  29. Smitha M.S., Singh S., Singh R. 2017. Microbial biotransformation: a process for chemical alterations. Journal of Bacteriology and Mycology, 4(2): 47–51. https://doi.org/10.15406/jbmoa.2017.04.00085
  30. Suzuki T., Oka M., Maeda K., Furusawa K., Uesaka H., Kataoka T. 1999. Synthesis and muscarinic activity of novel aniline derivatives with a 1-azabicyclo[3.3.0]octane moiety. Chemical and Pharmaceutical Bulletin, 47(1): 28–36. https://doi.org/10.1248/cpb.47.28
  31. Tasca A.L., Fletcher A. 2018. State of the art of the environmental behaviour and removal techniques of the endocrine disruptor 3,4-dichloroaniline. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances and Environmental Engineering, 53(3): 260–270. https://doi.org/10.1080/10934529.2017.1394701
  32. Thamer H.F., Dhahir S.A., Al-Sahib S.A., Kattom I.A. 2013. Synthesis and identification of some new derivative of trimethoprim and paracetemol drugs. Baghdad Science Journal, 10(1): 182–188. https://doi.org/10.21123/bsj.2013.10.1.182-188
  33. Thompson J.M., Chisholm B.J., Bezbaruah A.N. 2010. Reductive dechlorination of chloroacetanilide herbicide (alachlor) ­using zero-valent iron nanoparticles. Environmental Engineering, 27(3): 227–232. https://doi.org/10.1089/ees.2009.0147
  34. Valentovic M.A., Ball J.G., Anestis D.K., Rankin G.O. 1995. Comparison of the in vitro toxicity of dichloroaniline structural isomers. Toxicology in Vitro, 9(1): 75–81. https://doi.org/10.1016/0887-2333(94)00188-Z
  35. Vasileiadis S., Puglisi E., Papadopoulou E.S., Pertile G., Suciu N., Pappolla R.A., Tourna M., Karas P.A., Papadimitriou F., Kasiotakis A., Ipsilanti N., Ferrarini A., Sułowicz S., Fornasier F., Menkissoglu-Spiroudi U., Nicol G.W., Trevisan M., Karpouzas D.G. 2018. Blame it on the metabolite: 3,5-dichloraniline rather than the parent compound is responsible for decreasing diversity and function of soil microorganisms. Applied and Environmental Microbiology, 84(22): e01536-18. https://doi.org/10.1128/AEM.01536-18
  36. Wang W., Zhang L. 2013. Hydrogen transfer hydrogenation of nitrobenzene to aniline with Ru(acac)3 as the catalyst. Research on Chemical Intermediates, 40(8): 3109–3118. https://doi.org/10.1007/s11164-013-1155-7
  37. Yen J.-H., Tsai P.-W., Chen W.-C., Wang Y.-S. 2008. Fate of anilide and aniline herbicides in plant-materials-amended soils. Journal of Environmental Science and Health, Part B, 43(5): 382–389. https://doi.org/10.1080/03601230802062067