ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 3 of 6
Up
Ukr. Bot. J. 2023, 80(1): 64–83
https://doi.org/10.15407/ukrbotj80.01.064
Vegetation Science, Ecology, Conservation

Methodological aspects of synphytoindication analysis of topological differentiation of biotopes

Didukh Ya.P., Vasheniak Yu.A., Kuzemko A.A., Rosenblit Yu.V., Chusova O.O.
Abstract

The advantages and disadvantages of some most common methods of quantitative analysis used in processing of synphytoindication data were analyzed. These methods enabled reflection of important ecological characteristics of plant communities and assessment of the nature of their topological and regional differentiation characterizing α-, β-, γ-diversity. We also examined current debatable issues regarding the use of scales of ecological indicator values and methods of their correct comparison based on bringing to a single "denominator". The visual aspects of the gradient analysis used in assessment of topological differentiation of habitats based on the establishment of various types (vector, combinative and complex) of ecological and coenotic profiles are considered. We focused our attention on the application of optimal models of ordination methods (detrended correspondence analysis – DCA, non-metric multidimensional scaling – NMDS). The use of cluster analysis reflected in various methods of dendrogram constructing was evaluated. The analysis of the above methods allows us to evaluate the efficiency of their use in various aspects of synphytoindication techniques. This allows us to use such data for forecasting and modeling biocoenoses changes and development, for assessment and classification of biotopes, landscape structure (ecomer), zoning (ecochor), as well as for evaluation of the resistance of vegetation to the influence of external factors. The methods and approaches of mathematics and cybernetics are expected to be more widely used in geobotany in the future, since many pressing ecological issues related to non-linear development, emergent changes in the ecosystems properties and search for critical thresholds cannot be solved in a traditional way.

Keywords: cluster analysis, dendrogram, ecological scales, environmental factors, habitat, methods of ordination, synphytoindication, topological differentiation, vegetation

Full text: PDF (Ukr) 4.03M

References
  1. Brockett R.W. 1978. Feedback Invariants for Nonlinear Systems. IFAC Proceedings Volumes, 11(1): 1115–1120. https://doi.org/10.1016/S1474-6670(17)66062-2
  2. Cheng J., Edwards L.J., Maldonado-Molina M.M., Komro K.A., Muller K.E. 2010. Real longitudinal data analysis for real people: Building a good enough mixed model. Statistics in Medicine, 29: 504–520. https://doi.org/10.1002/sim.3775
  3. Dengler J., Hüllbusch E., Bita-Nicolae C., Chytrý M., Didukh Y., Diekmann M., Dierschke H., Englisch T., Ermakov N., Feldhaar H., Fosaa A. M., Frank D., Gillet F., Guarino R., Hennekens S., Hill M., Jelaska S., Jíménez-Alfaro B., Julve P., Kącki Z., Karrer G., Nobis P., Ozinga W., Pignatti S., Raus T., Řezníčková M., Ruprecht E., Šilc U., Steinbauer M., Theurillat J.-P., Tichý L., Jansen F. 2016. In: Ecological Indicator Values (EIVE) 1.0: a powerful open-access tool for vegetation scientists:25th EVS Meeting (Roma 6–9 April 2016) http://dx.doi.org/10.13140/RG.2.2.36391.34728
  4. Didukh Ya.P. 1995. Struktura klassyfykatsyonnykh edynyts rastytelnosty y ee taksonomycheskye katehoryi. Ekologia i noosferologia, 1(1–2): 56–73.
  5. Didukh Ya.P. 2011. The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre, 176 pp.
  6. Didukh Ya.P. 2020. In: Klasyfikatsiya roslynnosti ta biotopiv Ukrainy: materialy chetvertoi naukovo-teoretychnoi konferentsii. Kyiv, pp. 6–13.
  7. Didukh Ya.P., Budzhak V.V. 2020. Prohrama dlya avtomatyzatsii protsesu rozrakhunku balnykh pokaznykiv ekolohichnykh faktoriv: metodychni rekomendatsii. Chernivtsi: Yuriy Fedkovych Chernivtsi National University, 40 pp.
  8. Didukh Ya.P., Rosenblit Yu.V. 2022. Ecological and topological differentiation of biotopes in the Mountain Crimea.Ukrainian Botanical Journal, 79(4): 221–245. https://doi.org/10.15407/ukrbotj79.04.221
  9. Didukh Ya.P., Sokolenko U.M. 2014. Ecological differentiation of the biotopes of Karabi-yaila (Crimean Mountains). Ukrainian Botanical Journal, 71(2): 127–139. https://doi.org/10.15407/ukrbotj71.02.127
  10. Didukh Ya.P., Vasheniak I.A. 2013. Ecological and geobotanical zoning of Central Podillya. Ukrainian Botanical Journal, 70(6): 715–722. https://doi.org/10.15407/ukrbotj70.06.715
  11. Didukh Ya.P., Pliuta P.G., Karkutsiev G.M. 1993. Ekolohichni rezhymy fitotsenoziv na mezhi: Volynske Plato – M. Polissya – Kremenetski hory. Ukrainian Botanical Journal, 50(5): 23–34.
  12. Didukh Ya.P., Mala Y.I., Pashkevich N.A., Fitsailo T.V., Khodosovtsev O.E. 2016. Biotopes of the Crimean Mountains. Ed. Ya.P. Didukh. Kyiv: TOV NVP Interservis, 292 pp.
  13. Elith J., Leathwick J.R. 2009. Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40(1): 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  14. Ellenberg H., Leuschner C. 2010. Zeigerwerte der Pflanzen Mitteleuropas. In: Vegetation Mitteleuropas mit den Alpen. Stuttgart: Verlag Eugen Ulmer, 262 pp.
  15. Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W., Paulißen D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobototanica, 18: 1–258.
  16. Handbook of vegetation science. Pt 5. Ordination and classification of vegetation. 1973. Ed. R.H. Whittaker. Hague: Dr. W. Junk B.V., 737 pp.
  17. Hill M.O., Gauch H.G. 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio, 42: 47–58. https://doi.org/10.1007/978-94-009-9197-2_7
  18. Honcharenko I.V. 2017. Phytoindication of anthropogenic factor. Ed. I.V. Honcharenko. Dnipro: Serednyak, 127 pp.
  19. Isidori A. 1989. Elementary theory of nonlinear feedback for multi-input multi-output systems. In: Nonlinear Control Systems. Communications and Control Engineering Series. Berlin, Heidelberg: Springer, pp. 234–228. https://doi.org/10.1007/978-3-662-02581-9_5
  20. Jongman R.H.G., Ter Braak C.J.F., Van Tongeren O.F.R. 1995. Data analysis in community and landscape ecology. Cambridge: Cambridge University Press, 212 pp. https://doi.org/10.1017/CBO9780511525575
  21. Kaufman L., Rousseeuw P. 2005. Finding Groups in Data: An Introduction to a Cluster Analysis. New York. Wiley, 342 pp.
  22. Kröner E. 1973. Zur klassischen Theorie statistisch aufgebauter Festkörper. International Journal of Engineering Science, 11: 1–171. https://doi.org/10.1016/0020-7225(73)90077-3
  23. Kruskal J.B. 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29: 1–27. https://doi.org/10.1007/BF02289565
  24. Kruskal J.B. 1964b. Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29: 115–129. https://doi.org/10.1007/BF02289694
  25. Liubishchev O. 1923. O forme estestvennoy sistemy organizmov. Izvestiya biologicheskogo NII pri Permskom universitete, 2(3): 99–110.
  26. Mayr E. 1974. Populations, species and evolution. Cambridge: Harvard University Press, 453 pp.
  27. Mirkin B.M., Rozenberg G.S. 1978. Fitotsenologiya. Printsipy i metody. Moscow: Nauka, 212 pp.
  28. Mordecai A. 2003. Nonlinear Programming: Analysis and Methods. Mineola, New York: Dover Publishing, 512 pp.
  29. Nijmeijer H., van der Schaft A. 1990. Controlled invariance and decoupling for general nonlinear systems. In: Nonlinear Dynamical Control Systems. New York, NY: Springer, pp. 365–397. https://doi.org/10.1007/978-1-4757-2101-0_13
  30. Ramenskiy L.G. 1938. Vvedenie v kompleksnoe poczvenno-geobotaniczeskoe issledovanie zemel. Moscow: Selkhozhiz, 620 pp.
  31. Shapoval V., Kuzemko A. 2021. Syntaxonomy of steppe depression vegetation of Ukraine. Vegetation Classification and Survey, 2: 87–108. https://doi.org/10.3897/VCS/2021/62825
  32. Shepard R.N. 1962. The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika, 27: 125–139. https://doi.org/10.1007/BF02289630
  33. Shepard R.N. 1966. Metric structures in ordinal data. Journal of Mathematical Psychology, 3: 287–315. https://doi.org/10.1016/0022-2496(66)90017-4
  34. Tichý L. 2002. JUICE, software or vegetation classification. Journal of Vegetation Science, 13(3): 451–453. https://doi.org/10.1111/j.1654-1103.2002.tb02069.x
  35. Ward J. H. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58: 236–244. https://doi.org/10.1080/01621459.1963.10500845
  36. Westphal L.C. 2001. Linearization methods for nonlinear systems. In: Handbook of Control Systems Engineering. Book series The Springer International Series in Engineering and Computer Science. Vol. 635. Boston, MA: Springer, pp. 745–806. https://doi.org/10.1007/978-1-4615-1533-3_33
  37. Whittaker R.H. 1967. Gradient analysis of vegetation. Biological Reviews, 49: 207–264. https://doi.org/10.1111/j.1469-185X.1967.tb01419.x