ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 8 of 9
Up
Ukr. Bot. J. 2018, 75(5): 480–488
https://doi.org/10.15407/ukrbotj75.05.480
Plant Physiology, Biochemistry, Cell and Molecular Biology

Metabolic changes in the content of organic acids in roots of Glycine max (Fabaceae) at the early stages of symbiosis formation under the influence of fungicides

Pavlyshche A.V., Kyrychenko O.V., Kots S.Ya.
Abstract

The purpose of this work was to investigate the metabolic profile of organic acids in soybean roots at the early stages of the formation of the Bradyrhizobium japonicum 634 – soybean symbiotic system in pot experiment (from sprouts to the stage of three true leaves) by gas chromatography/mass spectrometry under the influence of fungicides Fever (class triazoles) and Standak Top (classes of phenylpyrazoles + benzimidazoles + strobilurins) used for seed treatment. Essential metabolic changes in the content of the main organic acids were revealed, namely malonic, butyric, malic, succinic, propionic, acetic, oxalic, palmitic, stearic, and benzoic acids, associated with the ontogenetic development of soybean plants. Seed treatments with fungicides Fever and Standak Top followed by inoculation with rhizobia led to notably accumulation of organic acids, in particular to significant increase of the content of propionic, malic, succinic, and acetic acids. This can be due to involvement of the above mentioned acids as intermediates of the Krebs cycle and the glyoxylate cycle; they can be as well considered as compounds with a protective effect for the formation of adaptive reactions of plants under anthropogenic stress. Benzoic acid detected at the functioning stage of symbiotic apparatus of soybean is possibly a protective compound. After seed treatment with fungicides, in soybean roots inoculated with nodule bacteria significant changes in the content of organic acids were observed. These results suggest that variation in organic acid content is a component of adaptation of leguminous plants to the action of anthropogenic stressor and maintenance of symbiotic systems under such conditions.

Keywords: Glycine max, Bradyrhizobium japonicum 634, soybean, symbiosis, fungicides, metabolom, organic acids

Full text: PDF (Ukr) 686K

References
  1. BadriD.V.,VivancoJ.M. Regulation and function of root exudates. Plant, Cell and Environment, 2009, 32(6): 666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x
  2. Brechenmacher L., Lei Z., Libault M., Findley S., Sugawara, M., Sadowsky M.J., Sumner L.W., Stacey G. Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol., 2010, 153(4): 1808–1822. https://doi.org/10.1104/pp.110.157800
  3. Bürgmann H., Meier S., Bunge M., Widmer F., Zeyer J. Effects of model root exudates on structure and activity of a soil diazotroph community. Environ. Microbiology, 2005, 7(11): 1711–1724. https://doi.org/10.1111/j.1462-2920.2005.00818.x
  4. Colebatch G., Desbrosses G., Ott T., Krusell L., Montanari O., Kloska S., Kopka J., Udvardi M.K. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. The Plant Journal, 2004, 39(4): 487–512. https://doi.org/10.1111/j.1365-313X.2004.02150.x
  5. Couto C., Silva L.R., Valentao P., Velazquez E., Peix A., Andrade P. Effects induced by the nodulation with Bradyrhizobium japonicum on Glycine max (soybean) metabolism and antioxidant potential. Food Chemistry, 2011, 127(4): 1487–1495. https://doi.org/10.1016/j.foodchem.2011.01.135
  6. Hall R.D. Plant metabolomics in a nutshell: potential and future challenges. Ann. Plant Rev., 2011, 43: 1–24. https://doi.org/10.1002/9781444339956.ch1
  7. Kaschuk G., Kuyper T.W., Leffelaar P.A., Hungria M., Giller K.E. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol. Biochem., 2009, 41(6): 1233–1244. https://doi.org/10.1016/j.soilbio.2009.03.005
  8. Kiriziy D.A., Stasik O.O., Pryadkina G.A., Shadchina T.M. Fotosintez: assimilyatsiya SO2 i mehanizmy ego regulyatsii. Kiev: Logos, 2014, vol. 2, 480 pp.
  9. Kolupaev Yu.E., Yastreb T.O. Fiziologiya i biohimiya kulturnyih rasteniy, 2013, 45(2): 113–126.
  10. Kots S.Ya., Morhun V.V., Patyka V.F., Datsenko V.K., Kruhova E.D. Kyrychenko E.V., Melnikova N.N., Mykhalkyv L.M. Biologicheskaya fiksatsiya azota ( Biological fixation of nitrogen). Kiev: Logos, 2010, vol. 1, 505 pp.
  11. Levishko A.S., Mamenko P.M. Visnyk KhNAU. Ser. Biolohiia, 2016, 1(37): 88–95. http://nbuv.gov.ua/UJRN/Vkhnau_biol_2016_1_8
  12. Levishko A.S., Mamenko P.M., Kots S.Ya. Fiziologiya rasteniy i genetika, 2014, 46(1): 19–26. http://nbuv.gov.ua/UJRN/FBKR_2014_45_1_4 https://doi.org/10.2298/GENSR1401019P
  13. Levishko A.S., Shymanska D.F., Khomenko Yu.O., Petechel L.V., Mamenko P.M. In: Materialy Vseukrainskoi naukovo-praktychnoi konferencii, Ekolohichnyi shliakh u maibutnie. Kyiv; Uman, 2012, pp. 129–131.
  14. Lisec J., Schauer N., Kopka J., Willmitzer L., Fernie A.R. Gas chromatography mass spectrometry – based metabolite profiling in plants. Nature Protocols, 2006, 1(1): 387–396. https://doi.org/10.1038/nprot.2006.59
  15. Lopez-Bucio J., Nieto-Jacobo M.F., Ramırez-Rodrıguez V., Herrera-Estrella L. Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Science, 2000, 160: 1–13. https://doi.org/10.1016/S0168-9452(00)00347-2
  16. Obata T., Fernie A.R. The use of metabolomics to dissect plant responses to abiotic stresses. Celluar and Molecular Life Sciences, 2012, 69(19): 3225–3243. https://doi.org/10.1007/s00018-012-1091-5
  17. Pavlyshche A.V., Kirizii D.A., Kots S.Ya. Plant physiology and genetics (Fiziologiya rasteniy i genetika), 2017, 49(3): 237–247. https://doi.org/10.15407/frg2017.03.237
  18. Provorov N.A., Shtark O.Y., Zhukov V.A., Borisov A.Y., Tikhonovich I.A. Developmental genetics of plant-microbe symbioses. New York: NOVA Science Publ. Inc., 2010, 135 pp.
  19. Prudnikova T.N., Roslyakov Yu.F. Izvestiya vuzov. Pischevaya tehnologiya, 1994, 5–6: 23–27.
  20. Roessner U., Bacic A. Metabolomics in plant research. Austral. biochemist, 2009, 40(3): 9–20.
  21. Senaratna T., Merrit D., Dixon K., Bunn E., Touchell D., Sivasithamparam K.. Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. Plant Growth Regul., 2003, 39(1): 77–81. https://doi.org/10.1023/A:1021865029762
  22. Thapa G., Dey M., Sahoo L., Panda S.K. An insight into the drought stress induced alterations in plants. Biol. Plantarum, 2011, 55(4): 603–613. https://doi.org/10.1007/s10535-011-0158-8 https://doi.org/10.1007/s10535-011-0158-8
  23. Widhalm J.R., Kuyper T.W., Leffelaar P.A., Hungria M., Giller K.E. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol. Biochem, 2009, 41(6): 1233–1244. https://doi.org/10.1016/j.soilbio.2009.03.005
  24. Williams M., Senaratna T., Dixon K., Sivasithamparam K. Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. Plant Growth Regulation, 2003, 39(1): 77–81. https://doi.org/10.1023/A:1021865029762
  25. Yastreb T.O. Visnyk Kharkiv. Nats. Univ. Ser. Biolohiia, 2012, 2(26): 92–97.
  26. Zaimenko N.V., Ivanytska B.O. Fizioloho-biokhimichni doslidzhennia. Introduktsiia roslyn, 2013, 3: 108–114.