ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 9 of 10
Up
Ukr. Bot. J. 2017, 74(5): 488–496
https://doi.org/10.15407/ukrbotj74.05.488
Plant Physiology, Biochemistry, Cell and Molecular Biology

Gravity-dependent modification of reproductive development of mosses

Lobachevska O.V., Kyyak N.Ya., Khorkavtsiv Ya.D., Kit N.A.
Abstract

The peculiarities of the generative and vegetative reproduction of some species of mosses depending on environmental factors were determined. It was established that different gravireactions of two ecomorphs of Bryum pseudotriquetrum depend on climatic conditions of the region. It was shown that the gravity polarizing effect can be an active osmotic regulatory factor for renewal vegetative reproduction and development acceleration of Leptobryum pyriforme during seasonal water shortage in natural environment. Under conditions of hypoxia and horizontal clinorotation, alcohol dehydrogenase (ADH) activity is a precondition for more rapid maturation of male gametangia rather than female ones, which provides a higher possibility of fertilization. At the stage of formation of sexual organs in Bryum argenteum, increasing sensitivity to the oxidative stress initiated by clinorotation was established. Reversibility of physiological processes after restoring the gravity vector can be considered as adaptation of the reproductive system to imitation of microgravity.

Keywords: gravisensitivity, reproduction, gametangium, mosses

Full text: PDF (Ukr) 1.47M

References
  1. Chebli Y., Geitmann A. Gravity research on plants: use of single-cell experimental models. Frontiers in Plant Science, 2011, 56(2): 1–10. https://doi.org/10.3389/fpls.2011.00056
  2. Frey W., Kürschner H. Asexual reproduction, habitat colonization and habitat maintenance in bryophytes. Flora, 2010, 4(20): 1–12. https://doi.org/10.1016/j.flora.2010.04.020
  3. DemkivO.T.,KhorkavtsivYa.D.,KardashA.R., ChabanKh.I. Fiziol. rasteniy, 1997, 44(2): 205–211.
  4. Demkiv O.T., Khorkavtsiv Ya.D., Pundiak O.I. Hravitatsiya yak formotvorchyi faktor rozvytku mokhiv. In: Fiziolohiya roslyn: problemy ta perspektyvy rozvytku. Ed. V.V. Morhun, Kyiv: Logos, 2009, vol. 2, pp. 403–408.
  5. Glime G.M. Physiological Ecology. Chapter 5 – Ecophysiology of Development. In: Bryophyte ecology, 2006, vol. 1, 268 pp., available at: http://www.bryoecol.mtu.edu (accessed 15.08.2015).
  6. Khorkavtsiv Ya.D., Kordyum E.L., Lobachevska O.V., Kyyak N.Ya., Kit N.A. Ukr. Bot. J., 2016, 72(6): 588–595. https://doi.org/10.15407/ukrbotj72.06.588
  7. Kletochnye mekhanizmy adaptatsii rasteniy k neblagopriyatnym vozdeystviyam ekologicheskikh faktorov v estestvennykh usloviyakh. Ed. E.L. Kordyum, Kiev: Naukova Dumka, 2003, 290 pp.
  8. Kordyum E.L. Plant cell gravisensitivity and adaptation to microgravity. Plant Biology, 2014, 16(1): 79–90. https://doi.org/10.1111/plb.12047 https://www.ncbi.nlm.nih.gov/pubmed/23731198
  9. Lakyn H.F. Biomertia, Moscow: Vysshaya shkola, 1990, 352 pp.
  10. Lobachevska O.V. In: Naukovi osnovy zberezhennya biotychnoyi riznomanitnosti. Tematychnyy zbirnyk Instytutu ekolohiyi Karpat NAN Ukrayiny, Lviv: Liha-Press, 2006, vyp. 7, pp. 137–143.
  11. Lobachevska O.V., Rabyk I.V. Visn. Lviv. un-tu, Ser. Biol., 2012, 60: 75–88.
  12. Lobachevska O.V., Khorkavtsiv Ya.D. Kosm. nauka i tekhnol., 2014, 20(5): 55–60.
  13. Musyenko M.M., Parshykova T.V., Slavnyy P.S. Spektrofotometricheskie metody v praktike fiziologii, biokhimii i ekologii rasteniy, Kiev: Phytosociocentre, 2001, 200 pp.
  14. Nedukha O.M. Klitynna obolonka roslyn i faktory seredovyshcha. Ed. H.O. Bilyavska, Kyiv: Alterpress, 2015, 289 pp.
  15. Ozheredova I.P., Parnikoza I.Yu., Poronnik O.O., Kozeretska I.A., Demidov S.V., Kunakh V.A. Mechanisms of Antarctic vascular plant adaptation to abiotic environmental factors. Cytology and Genetics, 2015, 49(2): 139–145. https://doi.org/10.3103/S0095452715020085
  16. Porterfield D.M., Dreschel T.W., Musgrave E. A groundbased comparison of nutrient delivery technologies originally developed for growing plants in the spaceflight environment. Hort Technology, 2003, 10(1): 179–185.
  17. Ripetskyj R.T., Kit N.A., Chaban C.I. Gravity effects on the growth and development of moss secondary protonemata. Adv. Space Res., 1998, 21(8/9): 1135–1139. https://doi.org/10.1016/S0273-1177(97)00202-0
  18. Rogozhin V.V., Rogozhina T.V. Praktikum po biokhimii selskokhozyaystvennoy produktsii, St. Petersburg: HIORD, 2016, 480 pp.
  19. Taran N.Yu., Batsmanova L.M., Okanenko O.A. Ukr. Bot. J., 2007, 64(2): 279–289.
  20. Vayner A.A., Kolupaev Yu.E., Oboznyi A.I. Fiziol. rasteniy i genetika., 2014, 46(30): 252–258.
  21. Stark L.R., McLetchie D.N., Mishler B.D. Sex expression, plant size, and spatial segregation of the sexes across a stress gradient in the desert moss Syntrichia caninervis. Bryologist, 2005, 108: 186–193. https://doi.org/10.1639/0007-2745(2005)108[0183:SEPSAS]2.0.CO;2