ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 8 of 10
Up
Ukr. Bot. J. 2017, 74(5): 475–487
https://doi.org/10.15407/ukrbotj74.05.475
Plant Physiology, Biochemistry, Cell and Molecular Biology

Ultrastructural peculiarities and state of the photosynthetic apparatus in leaves of Galanthus nivalis (Amaryllidaceae) in its spring stage of ontogenesis

Fediuk O.M., Bilyavska N.O., Zolotareva O.K.
Abstract

The morphometric data on areas of leaves, mesophyll cells, chloroplasts, granae and thylakoids of the early ephemeroid snowdrop (Galanthus nivalis) are given. The ultrastructural features of cells and chloroplasts have been analysed in G. nivalis leaves during germination and in vegetative and generative stages of development. The observed characteristics of the chloroplasts (small number of thylakoids in grana, developed system of stromal thylakoids) are typical for sun species. These features are more pronounced at the germination stage. During the vegetative period in chloroplasts, the amount and areas of the grana and thylakoids in grana increased. The starch grains were absent in the G. nivalis chloroplasts, unlike in the chloroplasts of sun species. Photochemical activity of the leaves was determined by the method of the delayed fluorescence of chlorophyll. It has been shown that, like other spring ephemeroids, G. nivalis is characterized by high activity of photosynthetic electron transport at low level of non-photochemical quenching of fluorescence, which indicates the adaptation of the photosynthetic apparatus of leaves to development under full sunlight and low above-zero temperatures in early spring.

Keywords: Galanthus nivalis, leaf, mesophyll, cell ultrastructure, chloroplast, thylakoid, induction of chlorophyll fluorescence

Full text: PDF (Ukr) 6.30M

References
  1. Anderson B., Barber J. Mechanisms of photodamage and protein degradation during photoinhibition of Photosystem II. Photosynthesis and the Environment, 1996, 5: 101–121. https://doi.org/10.1007/0-306-48135-9_4
  2. Bilger W., Schreiber U. Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves. Photosynth., 1986, 10: 303–308. https://doi.org/10.1007/BF00118295 https://www.ncbi.nlm.nih.gov/pubmed/24435377
  3. Biswal B. Chloroplast pigments and molecular responses of hotosynthesis under stress. In: Handbook of Photosynthesis. Ed. M. Pessarakli, New York, 1997, pp. 877–885.
  4. Björkman O., Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 1987, 170(4): 489–504. https://doi.org/10.1007/BF00402983 https://www.ncbi.nlm.nih.gov/pubmed/24233012
  5. Boardman N.K. Comparative photosynthesis of sun and shade plants. Plant Physiol., 1977, 28: 355–377. https://doi.org/10.1146/annurev.pp.28.060177.002035
  6. Dos Anjos L, Oliva M.A., Kuki K.N. Fluorescence imaging of light acclimation of Brazilian Atlantic Forest tree species. Photosynthetica, 2012, 50: 95–108. https://doi.org/10.1007/s11099-012-0018-6
  7. Fediuk O.M., Bilyavska N.O. Visn. Kharkiv. nats. agrar. untu, Ser. Biology, 2015, 2(35): 58–63.
  8. Genty B., Briantais J.M., Baker N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta, 1989, 990: 87–90. https://doi.org/10.1016/S0304-4165(89)80016-9
  9. Hikosaka K. Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Ann. Bot., 2005, 95(3): 521–533. https://doi.org/10.1093/aob/mci050 https://www.ncbi.nlm.nih.gov/pubmed/15585542 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246797
  10. Horyshyna T.K. J. Plant Physiol., 1965a, 12(3–4): 549–550.
  11. Horyshyna T.K. Nauch. dokl. vyssh. shk. byol. nauk, 1965b, 2: 136–139.
  12. Korneev D.Yu., Nyzhnyk T.P., Hryhoryuk Y.A., Kochubey S.M. Physiol. and biochem. cult. plants, 2002, 34(1): 3–10.
  13. Krall J.P., Edwards G.E. Relationship between photosystem II activity and CO2 fixation in leaves. Physiol. Plant., 1992, 86(1): 180–187. https://doi.org/10.1111/j.1399-3054.1992.tb01328.x
  14. Kratsch H.A., Wise R.R. The ultrastructure of chilling stress. Plant, Cell Environ., 2000, 23(4): 337–350. https://doi.org/10.1046/j.1365-3040.2000.00560.x
  15. Krause G.H., Baker N.R., Bowyer J.R. Photoinhibition induced by low temperatyres. In Photoinhibition of Photosynthesis: from molecular mechanisms to the field. BIOS Scientific, 1994, pp. 331–348.
  16. Krieger-Liszkay A., Fufezan C., Trebst A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth. Res., 2008, 98: 551–564. https://doi.org/10.1007/s11120-008-9349-3 https://www.ncbi.nlm.nih.gov/pubmed/18780159
  17. Lambrects H., Rook F., Kollöffel Chr. Carbohydrate Status of Tulip Bulbs during Cold-Induced Flower Stalk Elongation and Flowering. Plant Physiol., 1994, 104: 515–520. https://doi.org/10.1104/pp.104.2.515
  18. Lichtenthaler H.K., Babani F., Navratil. M., Buschmann C. Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and halfshade leaves as compared to sun and shade leaves of different trees. Photosynthetika, 2013, 117(1–3): 355–366.
  19. Mamushina N.S., Voznesenskaya E.V., Zubkova E.K., Maslova T.G., Miroslavov E.A. J. Plant Physiol., 2002, 49(2): 171–178.
  20. Mamushina N.S., Zubkova E.K., Bubolo L.S., Tyutereva E.V. Bot. Zhurn., 2011, 96(7): 906–916.
  21. Maxwell K., Johnson G.N., Chlorophyll fluorescence – a practical guide. J. Exp. Bot., 2000, 51: 659–666. https://doi.org/10.1093/jexbot/51.345.659 https://www.ncbi.nlm.nih.gov/pubmed/10938857
  22. Myroslavov E.A., Barmycheva E.M. Tsitologiya, 2005, 47: 1035–1038.
  23. Myroslavov E.A., Barmycheva E.M., Khodorova N.V. Bot. Zhurn., 2005, 90: 1430–1435.
  24. Oleksiychenko N.O., Kytayev O.I., Sovakova M.O., Sovakov O.V., Borshchevskyi M.O. Bioresursy i pryrodokorystuvannya, 2013, 5(5–6): 107–112.
  25. Öquist G., Anderson J.M., Mccaffery S., Chow W.S. Mechanistic differences in photoinhibition of sun and shade plants. Planta, 1992, 188(3): 422–431. https://doi.org/10.1007/BF00192810 https://www.ncbi.nlm.nih.gov/pubmed/24178333
  26. Paiva É.A.S., dos Santos Isaias R.M., Vale F.H.A. The influence of light intensity on anatomical structure and pigment contents of Tradescantia pallida (Rose) Hunt. CV. purpurea Boom (Commelinaceae) leaves. Braz. Arch. Biol. Technol., 2003, 46: 617–624. https://doi.org/10.1590/S1516-89132003000400017
  27. Polishchuk O.V. Ukr. Bot. J., 2017, 74(1): 86–93.
  28. Recchia I., Sparla F., Pupillo P. Photosynthetic properties of spring geophytes assessed by chlorophyll fluorescence analysis. Plant Physiol. Biochem., 2017, 118: 510–518. https://doi.org/10.1016/j.plaphy.2017.07.020 https://www.ncbi.nlm.nih.gov/pubmed/28759847
  29. Ščepánková I., Hudák J. Leaf and tepal anatomy, plastid ultrastructure and chlorophyll content in Galanthus nivalis L. and Leucojum aestivum L. Plant System. Evol., 2004, 243(3): 211–219. https://doi.org/10.1007/s00606-003-0086-y
  30. Schreiber U., Schliwa U., Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res., 1986, 10(1–2): 51–62. https://doi.org/10.1007/BF00024185 https://www.ncbi.nlm.nih.gov/pubmed/24435276
  31. Skrypchynskyi V.V., Skrypchynskyi Vl.V. Trudy MOIP, 1976, 42: 167–185.
  32. Skrypchynskyi V.V., Skrypchynskyi Vl.V., Shevchenko H.T. Bot. Zhurn., 1968, 53(9): 1233–1245.
  33. Sparling J.H. Assimilation rates of some woodland herbs in Ontario. Bot. Gazette, 1967, 128(3–4): 160–168. https://doi.org/10.1086/336393
  34. Topchiy N.M., Sytnik S.K., Syvash O.O., Zolotareva O.K. The effect of additional red irradiation on the photosynthetic apparatus of Pisum sativum. Photosynthetika, 2005, 43(3): 451–456. https://doi.org/10.1007/s11099-005-0072-4
  35. Tu W.F., Li Y., Zhang Y.M., Zhang L., Liu H.Y., Liu C., Yang C. Diminished photoinhibition is involved in high photosynthetic capacities in spring ephemeral Berteroa incana under strong light conditions. J. Plant Physiol., 2012, 169: 1463–1470. https://doi.org/10.1016/j.jplph.2012.05.027 https://www.ncbi.nlm.nih.gov/pubmed/22854181
  36. Van der Toorn A., Zemah H., Van As H., Bende P., Kamenetsky R. Developmental changes and water status in tulip bulbs during storage: Visualization by NMR Imaging. J. Exp. Bot., 2000, 51: 1277–1287. https://doi.org/10.1093/jexbot/51.348.1277 https://www.ncbi.nlm.nih.gov/pubmed/10937704
  37. Venzhyk Yu.V., Talanova V.V., Tytov A.F., Myroslavov E.A. Trudy Karel. NTs RAN, 2014, 5: 102–107.
  38. Voloshyna N.Yu, Bilyavska N.O. Dopovidi Nats. Akad. nauk Ukrayiny, 2009, 6: 173–177.
  39. Voloshyna N.Yu., Topchiy N.M., Bilyavska N.O., Didukh Ya.P. Dopovidi Nats. Akad. nauk Ukrayiny, 2008, 8: 153–158.
  40. Weryszko-Chmielewska E., Chwil M. Flowering biology and structure of floral nectaries in Galanthus nivalis L. Acta Soc. Bot. Polon., 2016, 85(1): 1–20. https://doi.org/10.5586/asbp.3486
  41. Wise R.R. The diversity of plastid form and function. The structure and function of plastids, 2007, pp. 3–26.
  42. Wise R.R., McWilliam J., Naylor A.W. A comparative studyof low-temperature-induced ultrastructural alterations of three species with differing chilling sensitivities. Plant, Cell and Environ., 1983, 6: 525–535. https://doi.org/10.1111/j.1365-3040.1983.tb01165.x