Ukr. Bot. J. 2025, 82(3): 197–205 https://doi.org/10.15407/ukrbotj82.03.197Cell Biology and Molecular Biology
Plant strategy to adapt to life in water: peculiarities of root system organization in Sagittaria sagittifolia and Alisma plantago-aquatica (Alismataceae)
Ovcharenko Yu., Shevchenko G.- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska Str., Kyiv 01601, Ukraine
Abstract
The roots of aquatic plants are known to grow continuously in the low-oxygen environment, frequently encountering hypoxia, a common environmental stress that affects plant growth. Hypoxia disrupts normal physiological and metabolic processes, making necessary to adapt and maintain productivity. Studies on Sagittaria sagittifolia and Alisma plantago-aquatica (Alismataceae) have demonstrated that root aerenchyma formation is a crucial mechanism for mitigating the detrimental effects of hypoxia in both species. Alisma plantago-aquatica develops the schizogenous root aerenchyma, whereas S. sagittifolia forms a lysigenous aerenchyma. The actin cytoskeleton plays a specific role in the formation of both aerenchyma types. The differences in root aerenchyma development between S. sagittifolia and A. plantago-aquatica highlight their evolutionary adaptation to distinct aquatic environments, reflecting both their phylogenetic divergence within the family Alismataceae and high developmental plasticity.
Keywords: actin microfilaments, aerenchyma, Alismataceae, aquatic plants, lateral roots
Full text: PDF (Eng) 1.75M
References
- Basit F., Khalid M., El-Keblawy A., Sheteiwy M.S., Sulieman S., Josko I., Zulfiqar F. 2024. Hypoxia stress: plant’s sensing, responses, and tolerance mechanisms. Environmental Science and Pollution Research, 31: 63458–63472. https://doi.org/10.1007/s11356-024-35439-4
- Bercu R. 2017. Structural aspects of Alisma plantago-aquatica L. (Alismataceae). Annals of West University of Timişoara, series Biology, 20(2): 179–184.
- Clowes F.A.L. 1985. Origin of epidermis and development of root primordia in Pistia, Hydrocharis and Eichhornia. Annals of Botany, 55: 849–857. https://doi.org/10.1093/oxfordjournals.aob.a086966
- Daniel K., Hartman S. 2024. How plant roots respond to waterlogging. Journal of Experimental Botany, 75: 511–525. https://doi.org/10.1093/jxb/erad332
- Du Yu., Scheres B. 2018. Lateral root formation and the multiple roles of auxin. Journal of Experimental Botany, 69(2): 155–167. https://doi.org/10.1093/jxb/erx223
- Dubrovsky J.G., Laskowski M. 2017. Lateral root initiation. In: Encyclopedia of applied plant sciences. Eds B. Tomas, B.G. Murray, D.G. Murphy. 2nd ed. Oxford: Academic Press, pp. 256–264.
- Evans D.E. 2003. Aerenchyma formation. New Phytologist, 161(1): 35–49. https://doi.org/10.1046/j.1469-8137.2003.00907.x
- Federici L., Di Matteo A., Fernandez-Recio J., Tsernoglou D., Cervone F. 2006. Polygalacturonase inhibiting proteins: Players in plant innate immunity? Trends in Plant Sciences, 11(2): 65–70. https://doi.org/10.1016/j.tplants.2005.12.005
- Gao M., Lin Zh., Luo C., Chi Zh., Mo Zh., He F., Jiang W., Chen L., He X., Wei Sh. 2016. Efficiency of propagation for Sagittaria sagittifolia using a temporary immersion bioreactor system. Journal of Agricultural Science and Technology, 6: 161–170. https://doi.org/10.17265/2161-6256/2016.03.003
- Ito Y., Tanaka N., Keener B.R., Lehtonen S. 2020. Phylogeny and biogeography of Sagittaria (Alismataceae) revisited: evidence for cryptic diversity and colonization out of South America. Journal of Plant Research, 133: 827–839. https://doi.org/10.1007/s10265-020-01229-5
- Karlova R., Boer D., Hayes S., Testerink Ch. 2021. Root plasticity under abiotic stress. Plant Physiology, 187(3): 1057–1070. https://doi.org/10.1093/plphys/kiab392
- Kawai M., Uchimiya H. 2000. Coleoptile senescence in rice (Oryza sativa L.). Annals of Botany, 86(2): 405–414. https://doi.org/10.1006/anbo.2000.1199
- Lansdown R.V., Beentje H.J. 2017. Alisma plantago-aquatica. The IUCN Red List of Threatened Species 2017: e.T164129A84275593. https://doi.org/10.2305/IUCN.UK.2017-1.RLTS.T164129A84275593.en (Accessed 25 April 2025).
- Longstreth D.J., Borkhsenious O.N. 2000. Root cell ultrastructure in developing aerenchyma tissue of three wetland species. Annals of Botany, 86(3): 641–646. https://doi.org/10.1006/anbo.2000.1151
- Luo S., Pan Ch., Liu S., Liao G., Li A., Wang Ya., Wang Ai., Xiao D., He L-F., Zhan J. 2023. Identification and functional characterization of the xyloglucan endotransglucosylase/hydrolase 32 (AhXTH32) in peanut during aluminum-induced programmed cell death. Plant Physiology and Biochemistry, 194: 161–168. https://doi.org/10.1016/j.plaphy.2022.11.002
- Motte H., Beeckman T. 2019. The evolution of root branching: increasing the level of plasticity. Journal of Experimental Botany, 70(3): 785–793. https://doi.org/10.1093/jxb/ery409
- Nakano R.T. 2015. Development of schizogenous intercellular spaces in plants. Frontiers in Plant Science, 6: art. 497. https://doi.org/10.3389/fpls.2015.00497
- Nibau C., Gibbs D.J., Coates J.C. 2008. Branching out in new directions: the control of root architecture by lateral root formation. New Phytologist, 179: 595–614. https://doi.org/10.1111/j.1469-8137.2008.02472.x
- Nicolau M., Reposi S., Gotelli M., Zarlavsky G. 2024. Megasporogenesis and megagametogenesis in Hydrocleys nymphoides, Alisma plantago-aquatica, and Sagittaria montevidensis (Alismataceae). Protoplasma, 261: 725–733. https://doi.org/10.1007/s00709-024-01930-5
- O’Dell D.H., Foard D.E. 1969. Presence of lateral root primordia in the radicle of buckwheat embryos. Bulletin of the Torrey Botanical Club, 96: 1–3.
- POWO. 2025–onward. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available at: https://powo.science.kew.org/ (Accessed 25 April 2025).
- Pelloux J., Rustérucci C., Mellerowicz E.J. 2007. New insights into pectin methylesterase structure and function. Trends in Plant Science, 12(6): 267–277. https://doi.org/10.1016/j.tplants.2007.04.001
- Reape T.J., McCabe P.F. 2010. Apoptotic-like regulation of programmed cell death in plants. Apoptosis, 15(3): 249–56. https://doi: 10.1007/s10495-009-0447-2
- Săndulescu E.B., Oltenacu N., Stavrescu-Bedivan M.-M. 2017. Morphological characterization of Alisma plantago-aquatica L. (Alismataceae): A case study and literature review. [University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Agriculture]. Scientific Papers. Series A. Agronomy, 60: 526–529.
- Schussler E.E., Longstreth D.J. 1996. Aerenchyma develops by cell lysis in roots and cell separation in leaf petioles in Sagittaria lancifolia (Alismataceae). American Journal of Botany, 83(10): 1266–1273.
- Seago J.L., Fernando D.D. 2013. Anatomical aspects of angiosperm root evolution. Annals of Botany, 112(2): 223–244.
- Shevchenko G.V., Brykov V.A., Ivanenko G.F. 2016. Specific features of root aerenchyma formation in Sium latifoliun L. (Apiaceae). Cytology and Genetics, 50: 293–299. https://doi.org/10.3103/S0095452716050121
- Steffens B., Geske T., Sauter M. 2011. Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytologist, 190(2): 369–378. https://doi.org/ 10.1111/j.1469-8137.2011.03600.x
- Takahashi H., Yamauchi T., Colmer T.D., Nakazono M. 2014. Aerenchyma formation in plants. In: Low-oxygen stress in plants. Eds J.T. van Dongen, F. Licausi. Plant cell monographs. Vol. 21. Vienna: Springer, pp. 247–265. https://doi.org/10.1007/978-3-7091-1254-0_13
- UkrBIN. 2025–onward. Ukrainian Biodiversity Information Network. Available at: https://www.ukrbin.com/ (Accessed 25 April 2025).
- Uotila P. 2009–onward. Alismataceae. In: Euro+Med Plantbase — the information resource for Euro-Mediterranean plant diversity. Available at: http://ww2.bgbm.org/EuroPlusMed/PTaxonDetail.asp?NameId=35621&PTRefFk=7300000 (Accessed 25 April 2025).
- van Doorn W.G., Beers E.P., Dangl J.L., Franklin-Tong V.E., Gallois P., Hara-Nishimura I., Jones A.M., Kawai-Yamada M., Lam E., Mundy J., Mur L.A.J., Petersen M., Smertenko A., Taliansky M., Van Breusegem F., Wolpert T., Woltering E., Zhivotovsky B., Bozhkov P.V. 2011. Morphological classification of plant cell deaths. Cell Death and Differentiation, 18: 1241–1246. https://doi.org/10.1038/cdd.2011.36
- Yamauchi T. 2024. Regulation of root tissue size and adaptations to hypoxia. In: Responses of plants to soil flooding. Eds J.I. Sakagami, M. Nakazono. Singapore: Springer. https://doi.org/10.1007/978-981-99-9112-9_4
- Yamauchi T., Colmer T.D., Pedersen O., Nakazono M. 2018a. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiology, 176(2): 1118–1130. https://doi.org/10.1104/pp.17.01157
- Yamauchi T., Tanaka A., Mori H., Nishizawa N. K. 2018b. Programmed cell death during aerenchyma formation in plants: Perspectives from histological and molecular studies. Plant, Cell & Environment, 41(5): 1124–1130. https://doi.org/10.1111/pce.13191
- Yamauchi T., Tanaka A., Tsutsumi N., Inukai Y., Nakazono M. 2020. A role for auxin in ethylene-dependent inducible aerenchyma formation in rice roots. Plants (Basel), 9(5): 610. https://doi: 10.3390/plants9050610
- Ye C., Zheng S., Jiang D., Lu J., Huang Z., Liu Z., Zhou H., Zhuang C., Li J. 2021. Initiation and execution of programmed cell death and regulation of reactive oxygen species in plants. International Journal of Molecular Sciences, 22(23): 12942. https://doi.org/10.3390/ijms222312942
- Zhupanov I.V., Brykov V.A. 2014. Anatomical and ultrasculptural features of lateral root formation in some amphibious plants. Ukrainian Botanical Journal, 71(1): 83–89. https://doi.org/10.15407/ukrbotj71.01.083