Ukr. Bot. J. 2025, 82(3): 189–196 https://doi.org/10.15407/ukrbotj82.03.189Cell Biology and Molecular Biology
Atypical cristae in bundle sheath mitochondria in leaves of Atriplex tatarica (Chenopodiaceae s. str. / Amaranthaceae s. l.)
Fediuk O., Bilyavska N., Akimov Yu., Zolotareva O.- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska Str., Kyiv 01601, Ukraine
Abstract
Electron microscopic analysis of leaf ultrastructure patterns of Atriplex tatarica (Chenopodiaceae s. str. / Amaranthaceae s. l.) revealed a prominent feature in mitochondria in bundle sheath cells (BSCs). Our studies of developing leaves of A. tatarica collected in the Novobilychi neighborhood of Sviatoshyn District (Kyiv City, Ukraine) demonstrated that the internal mitochondrial structure in BS cells is significantly different from that in other cells. Many BSc mitochondria have two types of cristae, normal and atypical ones. The atypical cristae represented with curved lamellae are oriented along the longitudinal axis of a mitochondrion or at some angles to it. Such mitochondria appear to be widely distributed within the BS cells in leaves of A. tatarica and are highly abundant (probably between 70 and 90%), but have not been observed in mitochondria from cells of other chlorenchymal and epidermal tissues. These abnormal mitochondria can only be identified by the presence of atypical cristae; no other differences in their fine structure have been observed. In many cases, such mitochondria are found in close proximity to chloroplasts. A functional connection between the architecture of atypical cristae and their physiological function in BS cells is possible. The close proximity of these mitochondria to chloroplasts indicates that they may play an important role in cellular energy or metabolite transport.
Keywords: Atriplex tatarica, bundle sheath cells, C4 photosynthesis, cristae, mitochondria, ultrastructure
Full text: PDF (Eng) 3.60M
References
- Akhani H., Trimborn P., Ziegler H. 1997. Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance. Plant Systematics and Evolution, 206: 187–221. https://doi.org/10.1007/BF00987948
- Anselmi C., Davies K.M., Faraldo-Gómez J.D. 2018. Mitochondrial ATP synthase dimers spontaneously associate due to a long-range membrane-induced force. Journal of General Physiology, 150(5): 763–770. https://doi.org/10.1085/jgp.201812033
- Baker N., Patel J., Khacho M. 2019. Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: How mitochondrial structure can regulate bioenergetics. Mitochondrion, 49: 259–268. https://doi.org/10.1016/j.mito.2019.06.003
- Bornhövd C., Vogel F., Neupert W., Reichert A.S. 2006. Mitochondrial membrane potential is dependent on the oligomeric state of F1F0-ATP synthase supracomplexes. Journal of Biological Chemistry, 281: 13990–13998. https://doi.org/10.1074/jbc.M512334200
- Campanella M., Casswell E., Chong S., Farah Z., Wieckowski M.R., Abramov A.Y., Tinker A., Duchen M.R. 2008. Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1. Cell Metabolism, 8(1): 13–25. https://doi.org/10.1016/j.cmet.2008.06.001
- Castillo D.D.L.R., Zarco-Zavala M., Olvera-Sanchez S., Pardo J.P., Juarez O., Martinez F., Flores-Herrera O. 2011. Atypical cristae morphology of human syncytiotrophoblast mitochondria: role for complex V. Journal of Biological Chemistry, 286(27): 23911–23919. https://doi.org/10.1074/jbc.M111.252056
- Davies K. M., Anselmi C., Wittig I., Faraldo-Gómez J.D., Kühlbrandt W. 2012. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proceedings of the National Academy of Sciences, 109(34): 13602–13607. https://doi.org/10.1073/pnas.1204593109
- Edwards G.E., Voznesenskaya E.V. 2010. C4 Photosynthesis: Kranz forms and single-cell C4 in terrestrial plants. In: Raghavendra A., Sage R. (eds.). C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Advances in Photosynthesis and Respiration. Vol. 32. Dordrecht: Springer, pp. 29–61. https://doi.org/10.1007/978-90-481-9407-0_4
- Fan Y., Asao S., Furbank R.T., von Caemmerer S., Day D.A., Tcherkez G., Atkin O.K. 2022. The crucial roles of mitochondria in supporting C4 photosynthesis. New Phytologist, 233(3): 1083–1096. https://doi.org/10.1111/nph.17818
- Fediuk O.M., Bilyavska N.O., Zolotareva O.K. 2017. Effects of sucrose on structure and functioning of photosynthetic apparatus of Galanthus nivalis L. leaves exposed to chilling stress. Annals of the Romanian Society for Cell Biology, 21(3): 43–51. https://doi.org/10.2139/ssrn.3504306
- Fediuk O.M., Bilyavska N.O., Zolotareva E.K. 2018. Effects of soil early-spring temperature on the morphometric parameters of mitochondria in Galanthus nivalis L. leaves. Plant Science Today, 5(4): 149–154. https://doi.org/10.14719/pst.2018.5.4.405
- Giraud M.F., Paumard P., Soubannier V., Vaillier J., Arselin G., Salin B., Schaeffer J., Brèthes D., Rago J.-P., Velours J. 2002. Is there a relationship between the supramolecular organization of the mitochondrial ATP synthase and the formation of cristae? Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1555(1–3): 174–180. https://doi.org/10.1016/S0005-2728(02)00274-8
- Hatch M.D. 1987. C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta, 895: 81–106. https://doi.org/10.1016/S0304-4173(87)80009-5
- Jaipargas E., Barton K., Mathur N., Mathur J. 2015. Mitochondrial pleomorphy in plant cells is driven by contiguous ER dynamics. Frontiers in Plant Science, 6: 783. https://doi.org/10.3389/fpls.2015.00783
- Kadereit G., Mavrodiev E.V., Zacharias E.H., Sukhorukov A.P. 2010. Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. American Journal of Botany, 97(10): 1664–1687. https://doi.org/10.3732/ajb.1000169
- Kochánková J., Mandák B. 2008. Biological flora of Central Europe: Atriplex tatarica L. Perspectives in Plant Ecology, Evolution and Systematics, 10(4): 217–229. https://doi.org/10.1016/j.ppees.2008.08.001
- Koteyeva N.K., Voznesenskaya E.V., Cousins A.B., Edwards G.E. 2014. Differentiation of C4 photosynthesis along a leaf developmental gradient in two Cleome species having different forms of Kranz anatomy. Journal of Experimental Botany, 65(13): 3525–3541. https://doi.org/10.1093/jxb/eru042
- Logan D. 2003. Mitochondrial dynamics. New Phytologist, 160: 463–478. https://doi.org/10.1046/j.1469-8137.2003.00918.x
- Paumard P., Vaillier J., Coulary B., Schaeffer J., Soubannier V., Mueller D.M., Brèthes D., Rago J.-P., Velours J. 2002. The ATP synthase is involved in generating mitochondrial cristae morphology. The EMBO Journal, 21: 221–230. https://doi.org/10.1093/emboj/21.3.221
- Pfundel E., Nagel E., Meister A. 1996. Analyzing the light energy distribution in the photosynthetic apparatus of C4 plants using highly purified mesophyll and bundle-sheath thylakoids. Plant Physiology, 112(3): 1055–1070. https://doi.org/10.1104/pp.112.3.1055
- POWO. 2025–onward. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available at: https://powo.science.kew.org/ (Accessed 21 April 2025).
- Romero-Carramiñana I., Esparza-Moltó P.B., Domínguez-Zorita S., Nuevo-Tapioles C., Cuezva J.M. 2023. IF1 promotes oligomeric assemblies of sluggish ATP synthase and outlines the heterogeneity of the mitochondrial membrane potential. Communications Biology, 6(1): 836. https://doi.org/10.1038/s42003-023-05214-1
- Rudov A., Mashkour M., Djamali M., Akhani H. 2020. A review of C4 plants in Southwest Asia: An ecological, geographical and taxonomical analysis of a region with high diversity of C4 eudicots. Frontiers in Plant Sciences, 11: art. 546518. https://doi.org/10.3389/fpls.2020.546518
- Sage R.F. 2004. The evolution of C4 photosynthesis. New Phytologist, 161(2): 341–370.
- Šerá B., Žarnovičan H., Hodálová I. 2023. Plants along roads in Slovakia: a review of Atriplex tatarica L. Biologia (Bratislava), 78(5): 1355–1362. https://doi.org/10.1007/s11756-022-01188-3
- Skripnik N.P. 1987. Chenopodiaceae. In: Prokudin Y.N. (ed.) et al. Identification manual of higher [vascular] plants of Ukraine. Kyiv: Naukova Dumka, pp. 84–93.
- Stickens D., Verbelen J.P. 1996. Spatial structure of mitochondria and ER denotes changes in cell physiology of cultured tobacco protoplasts. The Plant Journal, 9(1): 85–92. https://doi.org/10.1111/j.1365-2818.1995.tb03528.x
- Strauss M., Hofhaus G., Schröder R.R., Kühlbrandt W. 2008. Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. The EMBO Journal, 27(7): 1154–1160. https://doi.org/10.1038/emboj.2008.35
- Tang H., Zhu H. 2023. Specific changes in morphology and dynamics of plant mitochondria under abiotic stress. Horticulturae, 9: 11. https://doi.org/10.3390/horticulturae9010011
- Velours J., Dautant A., Salin B., Sagot I., Brèthes D. 2009. Mitochondrial F1F0-ATP synthase and organellar internal architecture. The International Journal of Biochemistry and Cell Biology, 41: 1783–1789. https://doi.org/10.1016/j.biocel.2009.01.011
- Venkatraman K., Lee C.T., Garcia G.C., Mahapatra A., Milshteyn D., Perkins G., Kim K.-Y., Pasolli H.A., Phan S., Lippincott-Schwartz J., Ellisman M.H., Rangamani P., Budin I. 2023. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome. The EMBO Journal, 42(24): e114054. https://doi.org/10.15252/embj.2023114054
- Von Caemmerer S., Furbank R.T. 2003. The C4 pathway: an efficient CO2 pump. Photosynthesis Research, 77: 191–207. https://doi.org/10.1023/A:1025830019591
- Walker B.J., Kramer D.M., Fisher N., Fu X. 2020. Flexibility in the energy balancing network of photosynthesis enables safe operation under changing environmental conditions. Plants, 9: 301. https://doi.org/10.3390/plants9030301
- Yin X., Struik P.C. 2018. The energy budget in C4 photosynthesis: insights from a cell-type-specific electron transport model. New Phytologist, 218(3): 986–998. https://doi.org/10.1111/nph.15051
- Žerdoner Čalasan A., Hammen S., Sukhorukov A.P., McDonald J.T., Brignone N.F., Böhnert T., Kadereit G. 2022. From continental Asia into the world: Global historical biogeography of the saltbush genus Atriplex (Chenopodieae, Chenopodioideae, Amaranthaceae). Perspectives in Plant Ecology, Evolution and Systematics, 54: art. 125660. https://doi.org/10.1016/j.ppees.2022.125660