ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 1 of 2
Up
Ukr. Bot. J. 2025, 82(3): 189–196
https://doi.org/10.15407/ukrbotj82.03.189
Cell Biology and Molecular Biology

Atypical cristae in bundle sheath mitochondria in leaves of Atriplex tatarica (Chenopodiaceae s. str. / Amaranthaceae s. l.)

Fediuk O., Bilyavska N., Akimov Yu., Zolotareva O.
Abstract

Electron microscopic analysis of leaf ultrastructure patterns of Atriplex tatarica (Chenopodiaceae s. str. / Amaranthaceae s. l.) revealed a prominent feature in mitochondria in bundle sheath cells (BSCs). Our studies of developing leaves of A. tatarica collected in the Novobilychi neighborhood of Sviatoshyn District (Kyiv City, Ukraine) demonstrated that the internal mitochondrial structure in BS cells is significantly different from that in other cells. Many BSc mitochondria have two types of cristae, normal and atypical ones. The atypical cristae represented with curved lamellae are oriented along the longitudinal axis of a mitochondrion or at some angles to it. Such mitochondria appear to be widely distributed within the BS cells in leaves of A. tatarica and are highly abundant (probably between 70 and 90%), but have not been observed in mitochondria from cells of other chlorenchymal and epidermal tissues. These abnormal mitochondria can only be identified by the presence of atypical cristae; no other differences in their fine structure have been observed. In many cases, such mitochondria are found in close proximity to chloroplasts. A functional connection between the architecture of atypical cristae and their physiological function in BS cells is possible. The close proximity of these mitochondria to chloroplasts indicates that they may play an important role in cellular energy or metabolite transport.

Keywords: Atriplex tatarica, bundle sheath cells, C4 photosynthesis, cristae, mitochondria, ultrastructure

Full text: PDF (Eng) 3.60M

References
  1. Akhani H., Trimborn P., Ziegler H. 1997. Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance. Plant Systematics and Evolution, 206: 187–221. https://doi.org/10.1007/BF00987948
  2. Anselmi C., Davies K.M., Faraldo-Gómez J.D. 2018. Mitochondrial ATP synthase dimers spontaneously associate due to a long-range membrane-induced force. Journal of General Physiology, 150(5): 763–770. https://doi.org/10.1085/jgp.201812033
  3. Baker N., Patel J., Khacho M. 2019. Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: How mitochondrial structure can regulate bioenergetics. Mitochondrion, 49: 259–268. https://doi.org/10.1016/j.mito.2019.06.003
  4. Bornhövd C., Vogel F., Neupert W., Reichert A.S. 2006. Mitochondrial membrane potential is dependent on the oligomeric state of F1F0-ATP synthase supracomplexes. Journal of Biological Chemistry, 281: 13990–13998. https://doi.org/10.1074/jbc.M512334200
  5. Campanella M., Casswell E., Chong S., Farah Z., Wieckowski M.R., Abramov A.Y., Tinker A., Duchen M.R. 2008. Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1. Cell Metabolism, 8(1): 13–25. https://doi.org/10.1016/j.cmet.2008.06.001
  6. Castillo D.D.L.R., Zarco-Zavala M., Olvera-Sanchez S., Pardo J.P., Juarez O., Martinez F., Flores-Herrera O. 2011. Atypical cristae morphology of human syncytiotrophoblast mitochondria: role for complex V. Journal of Biological Chemistry, 286(27): 23911–23919. https://doi.org/10.1074/jbc.M111.252056
  7. Davies K. M., Anselmi C., Wittig I., Faraldo-Gómez J.D., Kühlbrandt W. 2012. Structure of the yeast F1Fo-ATP synthase ­dimer and its role in shaping the mitochondrial cristae. Proceedings of the National Academy of Sciences, 109(34): 13602–13607. https://doi.org/10.1073/pnas.1204593109
  8. Edwards G.E., Voznesenskaya E.V. 2010. C4 Photosynthesis: Kranz forms and single-cell C4 in terrestrial plants. In: Raghavendra A., Sage R. (eds.). C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Advances in Photosynthesis and Respiration. Vol. 32. Dordrecht: Springer, pp. 29–61. https://doi.org/10.1007/978-90-481-9407-0_4
  9. Fan Y., Asao S., Furbank R.T., von Caemmerer S., Day D.A., Tcherkez G., Atkin O.K. 2022. The crucial roles of mitochondria in supporting C4 photosynthesis. New Phytologist, 233(3): 1083–1096. https://doi.org/10.1111/nph.17818
  10. Fediuk O.M., Bilyavska N.O., Zolotareva O.K. 2017. Effects of sucrose on structure and functioning of photosynthetic apparatus of Galanthus nivalis L. leaves exposed to chilling stress. Annals of the Romanian Society for Cell Biology, 21(3): 43–51. https://doi.org/10.2139/ssrn.3504306
  11. Fediuk O.M., Bilyavska N.O., Zolotareva E.K. 2018. Effects of soil early-spring temperature on the morphometric parameters of mitochondria in Galanthus nivalis L. leaves. Plant Science Today, 5(4): 149–154. https://doi.org/10.14719/pst.2018.5.4.405
  12. Giraud M.F., Paumard P., Soubannier V., Vaillier J., Arselin G., Salin B., Schaeffer J., Brèthes D., Rago J.-P., Velours J. 2002. Is there a relationship between the supramolecular organization of the mitochondrial ATP synthase and the formation of cristae? Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1555(1–3): 174–180. https://doi.org/10.1016/S0005-2728(02)00274-8
  13. Hatch M.D. 1987. C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta, 895: 81–106. https://doi.org/10.1016/S0304-4173(87)80009-5
  14. Jaipargas E., Barton K., Mathur N., Mathur J. 2015. Mitochondrial pleomorphy in plant cells is driven by contiguous ER dynamics. Frontiers in Plant Science, 6: 783. https://doi.org/10.3389/fpls.2015.00783
  15. Kadereit G., Mavrodiev E.V., Zacharias E.H., Sukhorukov A.P. 2010. Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. American Journal of Botany, 97(10): 1664–1687. https://doi.org/10.3732/ajb.1000169
  16. Kochánková J., Mandák B. 2008. Biological flora of Central Europe: Atriplex tatarica L. Perspectives in Plant Ecology, Evolution and Systematics, 10(4): 217–229. https://doi.org/10.1016/j.ppees.2008.08.001
  17. Koteyeva N.K., Voznesenskaya E.V., Cousins A.B., Edwards G.E. 2014. Differentiation of C4 photosynthesis along a leaf developmental gradient in two Cleome species having different forms of Kranz anatomy. Journal of Experimental Botany, 65(13): 3525–3541. https://doi.org/10.1093/jxb/eru042
  18. Logan D. 2003. Mitochondrial dynamics. New Phytologist, 160: 463–478. https://doi.org/10.1046/j.1469-8137.2003.00918.x
  19. Paumard P., Vaillier J., Coulary B., Schaeffer J., Soubannier V., Mueller D.M., Brèthes D., Rago J.-P., Velours J. 2002. The ATP synthase is involved in generating mitochondrial cristae morphology. The EMBO Journal, 21: 221–230. https://doi.org/10.1093/emboj/21.3.221
  20. Pfundel E., Nagel E., Meister A. 1996. Analyzing the light energy distribution in the photosynthetic apparatus of C4 plants using highly purified mesophyll and bundle-sheath thylakoids. Plant Physiology, 112(3): 1055–1070. https://doi.org/10.1104/pp.112.3.1055
  21. POWO. 2025–onward. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available at: https://powo.science.kew.org/ (Accessed 21 April 2025).
  22. Romero-Carramiñana I., Esparza-Moltó P.B., Domínguez-Zorita S., Nuevo-Tapioles C., Cuezva J.M. 2023. IF1 promotes oligomeric assemblies of sluggish ATP synthase and outlines the heterogeneity of the mitochondrial membrane potential. Communications Biology, 6(1): 836. https://doi.org/10.1038/s42003-023-05214-1
  23. Rudov A., Mashkour M., Djamali M., Akhani H. 2020. A review of C4 plants in Southwest Asia: An ecological, geographical and taxonomical analysis of a region with high diversity of C4 eudicots. Frontiers in Plant Sciences, 11: art. 546518. https://doi.org/10.3389/fpls.2020.546518
  24. Sage R.F. 2004. The evolution of C4 photosynthesis. New Phytologist, 161(2): 341–370.
  25. Šerá B., Žarnovičan H., Hodálová I. 2023. Plants along roads in Slovakia: a review of Atriplex tatarica L. Biologia (Bratislava), 78(5): 1355–1362. https://doi.org/10.1007/s11756-022-01188-3
  26. Skripnik N.P. 1987. Chenopodiaceae. In: Prokudin Y.N. (ed.) et al. Identification manual of higher [vascular] plants of Ukraine. Kyiv: Naukova Dumka, pp. 84–93.
  27. Stickens D., Verbelen J.P. 1996. Spatial structure of mitochondria and ER denotes changes in cell physiology of cultured tobacco protoplasts. The Plant Journal, 9(1): 85–92. https://doi.org/10.1111/j.1365-2818.1995.tb03528.x
  28. Strauss M., Hofhaus G., Schröder R.R., Kühlbrandt W. 2008. Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. The EMBO Journal, 27(7): 1154–1160. https://doi.org/10.1038/emboj.2008.35
  29. Tang H., Zhu H. 2023. Specific changes in morphology and dynamics of plant mitochondria under abiotic stress. ­Horticulturae, 9: 11. https://doi.org/10.3390/horticulturae9010011
  30. Velours J., Dautant A., Salin B., Sagot I., Brèthes D. 2009. Mitochondrial F1F0-ATP synthase and organellar internal architecture. The International Journal of Biochemistry and Cell Biology, 41: 1783–1789. https://doi.org/10.1016/j.biocel.2009.01.011
  31. Venkatraman K., Lee C.T., Garcia G.C., Mahapatra A., Milshteyn D., Perkins G., Kim K.-Y., Pasolli H.A., Phan S., Lippincott-Schwartz J., Ellisman M.H., Rangamani P., Budin I. 2023. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome. The EMBO Journal, 42(24): e114054. https://doi.org/10.15252/embj.2023114054
  32. Von Caemmerer S., Furbank R.T. 2003. The C4 pathway: an efficient CO2 pump. Photosynthesis Research, 77: 191–207. https://doi.org/10.1023/A:1025830019591
  33. Walker B.J., Kramer D.M., Fisher N., Fu X. 2020. Flexibility in the energy balancing network of photosynthesis enables safe operation under changing environmental conditions. Plants, 9: 301. https://doi.org/10.3390/plants9030301
  34. Yin X., Struik P.C. 2018. The energy budget in C4 photosynthesis: insights from a cell-type-specific electron transport model. New Phytologist, 218(3): 986–998. https://doi.org/10.1111/nph.15051
  35. Žerdoner Čalasan A., Hammen S., Sukhorukov A.P., McDonald J.T., Brignone N.F., Böhnert T., Kadereit G. 2022. From continental Asia into the world: Global historical biogeography of the saltbush genus Atriplex (Chenopodieae, ­Chenopodioideae, Amaranthaceae). Perspectives in Plant Ecology, Evolution and Systematics, 54: art. 125660. https://doi.org/10.1016/j.ppees.2022.125660