ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 6 of 6
Up
Ukr. Bot. J. 2025, 82(2): 144–161
https://doi.org/10.15407/ukrbotj82.02.144
Cell Biology and Molecular Biology

Exploring the genetic diversity and population structure of little-pod false flax (Camelina microcarpa: Brassicaceae) in Ukraine

Sakharova V.H. 1, Blume R.Y. 1, Rabokon A.M. 1, Mosyakin S.L. 2, Blume Y.B. 1
Abstract

Taxa of the genus Camelina faced numerous hybridization and allopolyploidy events during their evolutionary history. Little-pod false flax, C. microcarpa, a direct wild progenitor of the cultivated oilseed crop C. sativa, is one of the most widespread representatives of the genus. Due to several genetic bottleneck events and subsequent domestication, C. sativa now exhibits low genetic diversity, which significantly complicates its breeding. Camelina microcarpa wild germplasm seems to be a valuable pool of genetic diversity that could be effectively used for gene introgression in C. sativa and overcoming its genetic paucity. However, the genetic diversity and population structure of C. microcarpa remain insufficiently understood, particularly in Ukraine, which is considered among Camelina’s genetic diversity hotspots. Here, we used a combination of TBP/cTBP and SSR markers to assess the genetic diversity and population structure of C. microcarpa in Ukraine and partially in adjacent Western European regions. Three distinct genetic populations have been identified: Southern Ukrainian (predominantly occurring in the Steppe zone), Northwestern Ukrainian (occurring in the Forest-Steppe zone and Precarpathian region, particularly in Lviv Region), and Western European (Poland, Hungary, Germany). Our findings suggest that the Southern Ukrainian population exhibits the highest genetic diversity, possibly representing an ancestral gene pool, while the Northwestern Ukrainian and Western European populations demonstrate evidence of a high gene flow with the Southern Ukrainian population of C. microcarpa. Our phylogenetic analysis confirmed strong differentiation of these three populations, while the population structure analysis further indicated a high rate of admixtures between the populations. These findings enhance our under­standing of the evolutionary relationships and geographic distribution of C. microcarpa. The observed high heterozygosity and complex population structure highlight the potential of C. microcarpa (especially the Southern Ukrainian population) to be used as a germplasm donor for C. sativa breeding programs. Our study provides new insights into hexaploid Camelina species evolution and genetic diversity, establishing foundations for future development of wild germplasm utilization strategies and cultivated false flax breeding improvement.

Keywords: Brassicaceae, Camelina microcarpa, crop wild relatives, distribution, little-pod false flax, oilseed crop, Ukraine

Full text: PDF (Ukr) 2.54M

References
  1. Benbouza H., Jacquemin J.M., Baudoin J.P., Mergeai G. 2006. Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnologie, Agronomie, Société et Environnement, 10(2): 77–81.
  2. Berti M., Gesch R., Eynck C., Anderson J., Cermak S. 2016. Camelina uses, genetics, genomics, production, and management. Industrial Crops and Products, 94: 690–710. https://doi.org/10.1016/j.indcrop.2016.09.034
  3. Blume R.Y., Rabokon A.N., Postovitova A.S., Demkovich A.Y., Pirko Y.V., Yemets A.I., Rakhmetov D.B., Blume Y.B. 2020. Evaluating diversity and breeding perspectives of Ukrainian spring camelina genotypes. Cytology and Genetics, 54(5): 420–436. https://doi.org/10.3103/S0095452720050084
  4. Blume R.Y., Rakhmetov D.B., Blume Y.B. 2022. Evaluation of Ukrainian Camelina sativa germplasm productivity and analysis of its amenability for efficient biodiesel production. Industrial Crops and Products, 187B: 115477. https://doi.org/10.1016/j.indcrop.2022.115477
  5. Blume R.Y., Kalendar R.N., Guo L., Cahoon E.B., Blume Y.B. 2023. Overcoming genetic paucity of Camelina sativa: possibilities for interspecific hybridization conditioned by the genus evolution pathway. Frontiers in Plant Science, 14: 1259431. https://doi.org/10.3389/fpls.2023.1259431
  6. Blume R.Y., Sakharova V.H., Rabokon A.M., Shumilova A.V., Shiyan N.M., Mosyakin S.L., Blume Y.B. 2024a. Distribution and infraspecific diversity of little-pod false flax (Camelina microcarpa, Brassicaceae) in Ukraine. Ukrainian Botanical Journal, 81(1): 52–62. https://doi.org/10.15407/ukrbotj81.01.052
  7. Blume R.Y., Rabokon A.M., Pydiura M., Yemets A.I., Pirko Y.V., Blume Y.B. 2024b. Genome-wide identification and evolution of the tubulin gene family in Camelina sativa. BMC Genomics, 25: 599. https://doi.org/10.1186/s12864-024-10503-y
  8. Blume R.Y., Hotsuliak V.Y., Nazarenus T.J., Cahoon E.B., Blume Y.B. 2024c. Genome-wide identification and diversity of FAD2, FAD3 and FAE1 genes in terms of biotechnological importance in Camelina species. BMC Biotechnology, 24: 107. https://doi.org/10.1186/s12896-024-00936-4
  9. Bog M., Braglia L., Morello L., Noboa Melo K.I., Schubert I., Shchepin O.N., Sree K.S., Xu S., Lam E., Appenroth K.J. 2022. Strategies for intraspecific genotyping of duckweed: comparison of five orthogonal methods applied to the giant duckweed Spirodela polyrhiza. Plants, 11: 3033. https://doi.org/10.3390/plants11223033
  10. Braglia L., Gavazzi F., Gianì S., Morello L., Breviario D. 2023. Tubulin-Based Polymorphism (TBP) in plant genotyping. Plant Genotyping: Methods in Molecular Biology, 2638: 387–401. https://doi.org/10.1007/978-1-0716-3024-2_28
  11. Brock J.R., Dönmez A.A., Beilstein M.A., Olsen K.M. 2018. Phylogenetics of Camelina Crantz (Brassicaceae) and insights on the origin of gold-of-pleasure (Camelina sativa). Molecular Phylogenetics and Evolution, 127: 834–842. https://doi.org/10.1016/j.ympev.2018.06.031
  12. Brock J.R., Mandáková T., Lysak M.A., Al-Shehbaz I.A. 2019. Camelina neglecta (Brassicaceae, Camelineae), a new diploid species from Europe. PhytoKeys, 115: 51–57. https://doi.org/10.3897/phytokeys.115.31704
  13. Brock J.R., Scott T., Lee A.Y., Mosyakin S.L., Olsen K.M. 2020. Interactions between genetics and environment shape Camelina seed oil composition. BMC Plant Biology, 20: 423. https://doi.org/10.1186/s12870-020-02641-8
  14. Brock J.R., Mandáková T., McKain M., Lysak M.A., Olsen K.M. 2022a. Chloroplast phylogenomics in Camelina (Brassicaceae) reveals multiple origins of polyploid species and the maternal lineage of C. sativa. Horticulture Research, 9: uhab050. https://doi.org/10.1093/hortre/uhab050
  15. Brock J.R., Ritchey M.M., Olsen K.M. 2022b. Molecular and archaeological evidence on the geographical origin of domestication for Camelina sativa. American Journal of Botany, 109(7): 1177–1190. https://doi.org/10.1002/ajb2.16027
  16. Brock J.R., Bird K.A., Platts A.E., Gomez-Cano F., Gupta S.K., Palos K., Railey C.E., Teresi S.J., Lee Y.S., Magallanes-Lundback M., Pawlowski E.G., Nelson A.D.L., Grotewold E., Edger P.P. 2024. Exploring genetic diversity, population structure, and subgenome differences in the allopolyploid Camelina sativa: implications for future breeding and research studies. Horticulture Research, 11(11): uhae247. https://doi.org/10.1093/hr/uhae247
  17. Chaudhary R., Koh C.S., Kagale S., Tang L., Wu S.W., Lv Z., Mason A.S., Sharpe A.G., Diederichsen A., Parkin I.A.P. 2020. Assessing diversity in the Camelina genus provides insights into the genome structure of Camelina sativa. G3: Genes, Genomes, Genetics, 10(4): 1297–1308. https://doi.org/10.1534/g3.119.400957
  18. Chaudhary R., Koh C.S., Perumal S., Jin L., Higgins E.E., Kagale S., Smith M.A., Sharpe A.G., Parkin I.A.P. 2023a. Sequencing of Camelina neglecta, a diploid progenitor of the hexaploid oilseed Camelina sativa. Plant Biotechnology Journal, 21: 521–535. https://doi.org/10.1111/pbi.13968
  19. Chaudhary R., Higgins E.E., Eynck C., Sharpe A.G., Parkin I.A.P. 2023b. Mapping QTL for vernalization requirement identified adaptive divergence of the candidate gene Flowering Locus C in polyploid Camelina sativa. Plant Genome, 16: e20397. https://doi.org/10.1002/tpg2.20397
  20. Costa C.M., Roberts R.P. 2014. Techniques for improving the quality and quantity of DNA extracted from herbarium specimens. Phytoneuron, 2014-48: 1–8. Available at: https://www.phytoneuron.net/2014Phytoneuron/48PhytoN-DNAextraction.pdf
  21. de Meeûs T., Goudet J. 2007. A step-by-step tutorial to use HierFstat to analyse populations hierarchically structured at multiple levels. Infection, Genetics and Evolution, 7(6): 731–735. https://doi.org/10.1016/j.meegid.2007.07.005
  22. Drábková L., Kirschner J., Vlček Č. 2012. Comparison of seven DNA extraction and amplification protocols in historical herbarium specimens of Juncaceae. Plant Molecular Biology Reporter, 20(2): 161–175. https://doi.org/10.1007/BF02799431
  23. Eliáš P., Dítě D., Hajnalová M., Eliašová M. 2014. Current occurrence of rare weed Camelina rumelica (Čelak.) Velen. in Slovakia. Thaiszia, 24(2): 101–109. https://ibot.sav.sk/usr/Dano/docs/THAIZSIA_2014_Cameilna_rumelica_Slovakia.pdf
  24. Evanno G., Regnaut S., Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8): 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  25. Faure J.D., Tepfer M. 2016. Camelina, a Swiss knife for plant lipid biotechnology. Oilseeds and Fats, Crops and Lipids, 23(5): D503. https://doi.org/10.1051/ocl/2016023
  26. Galasso I., Manca A., Braglia L., Ponzoni E., Breviario D. 2015. Genomic fingerprinting of Camelina species using cTBP as molecular marker. American Journal of Plant Sciences, 6: 1184–1200. https://doi.org/10.4236/ajps.2015.68122
  27. Ghamkhar K., Croser J., Aryamanesh N., Campbell M., Kon’kova N., Francis C. 2010. Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome, 53(7): 558–567. https://doi.org/10.1139/g10-034
  28. Ghidoli M., Ponzoni E., Araniti F., Miglio D., Pilu R. 2023. Genetic improvement of Camelina sativa (L.) Crantz: Opportunities and challenges. Plants, 12: 570. https://doi.org/10.3390/plants12030570
  29. Hoang D.T., Chernomor O., von Haeseler A., Minhnand B.Q., Vinh L.S. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2): 518–522. https://doi.org/10.1093/molbev/msx281
  30. Hryhoriv Y., Lyshenko M., Butenko A., Nechyporenko V., Makarova V., Mikulina M., Bahorka M., Tymchuk D.S., Samoshkina I., Torianyk I. 2023. Competitiveness and advantages of Camelina sativa on the market of oil crops. Ecological Engineering & Environmental Technology, 24(4): 97–103. https://doi.org/10.12912/27197050/161956
  31. Hubisz M.J., Falush D., Stephens M., Pritchard J.K. 2009. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9(5): 1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x
  32. Iljinska A.P., Didukh Ya.P., Burda R.I., Korotchenko I.A. 2007. Ecoflora of Ukraine. Vol. 5. Ed. Ya.P. Didukh. Kyiv: Phytosociocentre, 584 pp.
  33. Jombart T., Ahmed I. 2011. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics, 21: 3070–3071. https://doi.org/10.1093/bioinformatics/btr521
  34. Kagale S., Koh C., Nixon J., Bollina V., Clarke W.E., Tuteja R., Spillane C., Robinson S.J., Links M.G., Clarke C., Higgins E.E., Huebert T., Sharpe A.G., Parkin I.A.P. 2014. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nature Communications, 5: 3706. https://doi.org/10.1038/ncomms4706
  35. Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14: 587–589. https://doi.org/10.1038/nmeth.4285
  36. Komarova I.B., Rozhkovan V.V. 2020. False flax: breeding, seed production, cultivation and utilization. Kyiv: Agrarna Nauka, 96 pp.
  37. Koniakin S.M., Burda R.I., Budzhak V.V. 2023. The alien flora of the Kyiv Urban Area, 2003–2022: Prelude notes. Chornomorski Botanical Journal, 19(2): 200–225. https://doi.org/10.32999/ksu1990-553X/2023-19-2-4
  38. Kopelman N.M., Mayzel J., Jakobsson M., Rosenberg N.A., Mayrose I. 2015. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15: 1179–1191. https://doi.org/10.1111/1755-0998.12387
  39. Letunic I., Bork P. 2024. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research, 52(W1): W78–W82. https://doi.org/10.1093/nar/gkae268
  40. Li Y.-L., Liu J.-X. 2018. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources, 18: 176–177. https://doi.org/10.1111/1755-0998.12719
  41. Luo Z., Brock J., Dyer J.M., Kutchan T., Schachtman D., Augustin M., Ge Y., Fahlgren N., Abdel-Haleem H. 2019. Genetic diversity and population structure of a Camelina sativa spring panel. Frontiers in Plant Science, 10: 184. https://doi.org/10.3389/fpls.2019.00184
  42. Lykhochvor V., Petrychenko V., Andrushko O., Lykhochvor D. 2024. Flax and false flax as important sources of essential omega-3 fatty acids. Bulletin of Lviv National Environmental University. Series Agronomy, (28): 78–83. https://doi.org/10.31734/agronomy2024.28.078
  43. Lykholat Y.V., Rabokon A.M., Blume R.Ya., Khromykh N.O., Didur O.O., Sakharova V.H., Kabar A.M., Pirko Ya.V., Blume Ya.B. 2022. Characterization of ß-tubulin genes in Prunus persica and Prunus dulcis for fingerprinting of their interspecific hybrids. Cytology and Genetics, 56(6): 481–493. https://doi.org/10.3103/S009545272206007X
  44. Manca A., Pecchia P., Mapelli S., Masella P., Galasso I. 2012. Evaluation of genetic diversity in a Camelina sativa (L.) Crantz collection using microsatellite markers and biochemical traits. Genetic Resources and Crop Evolution, 60: 1223–1226. https://doi.org/10.1007/s10722-012-9913-8
  45. Mandáková T., Lysak M.A. 2022. The identification of the missing maternal genome of the allohexaploid camelina (Camelina sativa). Plant Journal, 112: 622–629. https://doi.org/10.1111/tpj.15931
  46. Mandáková T., Pouch M., Brock J.R., Al-Shehbaz I.A., Lysak M.A. 2019. Origin and evolution of diploid and allopolyploid Camelina genomes were accompanied by chromosome shattering. Plant Cell, 31(11): 2596–2612. https://doi.org/10.1105/tpc.19.00366
  47. Martin S.L., Smith T.W., James T., Shalabi F., Kron P., Sauder C.A. 2017. An update to the Canadian range, abundance, and ploidy of Camelina spp. (Brassicaceae) east of the Rocky Mountains. Botany, 95(4): 405–417. https://doi.org/10.1139/cjb-2016-0070
  48. Martin S.L., Lujan-Toro B.E., Sauder C.A., James T., Ohadi S., Hall L.M. 2019. Hybridization rate and hybrid fitness for Camelina microcarpa Andrz. ex DC. (♀) and Camelina sativa (L.) Crantz. Evolutionary Applications, 12: 443–455. https://doi.org/10.1111/eva.12724
  49. Martin S.L., Lujan Toro B., James T., Sauder C.A., Laforest M. 2022. Insights from the genomes of 4 diploid Camelina spp. G3: Genes, Genomes, Genetics, 12(12): jkac182. https://doi.org/10.1093/g3journal/jkac182
  50. Mosyakin S.L., Brock J.R. 2021. On the proper type designation for Camelina microcarpa, a wild relative and possible progenitor of the crop species C. sativa (Brassicaceae). Candollea, 76(1): 55–63. https://doi.org/10.15553/c2021v761a4
  51. Mosyakin S.L., Mosyakin A.S. 2021. Lockdown botany 2020: some noteworthy records of alien plants in Kyiv City and Kyiv Region. Ukrainian Botanical Journal, 78(2): 96–111. https://doi.org/10.15407/ukrbotj78.02.096
  52. Mupondwa E., Li X., Tabil L., Falk K., Gugel R. 2016. Technoeconomic analysis of camelina oil extraction as feedstock for biojet fuel in the Canadian Prairies. Biomass Bioenergy, 95: 221–234. https://doi.org/10.1016/j.biombioe.2016.10.014
  53. Nguyen H.T., Silva J.E., Podicheti R., Macrander J., Yang W., Nazarenus T.J., Nam J.-W., Jaworski, J.G., Lu C., Scheffler B.E., Mockaitis K., Cahoon E.B. 2013. Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Plant Biotechnology Journal, 11: 759–769. https://doi.org/10.1111/pbi.12068
  54. Nguyen L.-T., Schmidt H.A., von Haeseler A., Minh B.Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32(1): 268–74. https://doi.org/10.1093/molbev/msu300
  55. Puechmaille S.J. 2016. The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16: 608–627. https://doi.org/10.1111/1755-0998.12512
  56. Rabokon A.M. 2021. Intron length polymorphism of tubulin genes as an effective tool for genetic plant differentiation. Visnyk of the National Academy of Sciences of Ukraine, 10: 30–35.
  57. Rabokon A.M., Blume R.Y., Sakharova V.G., Chopei M.I., Afanasieva K.S., Yemets A.I., Rakhmetov D.B., Pirko Y.V., Blume Y.B. 2023. Genotyping of interspecific Brassica rapa hybrids implying ß-tubulin gene intron length polymorphism (TBP/cTBP) assessment. Cytology and Genetics, 57(6): 538–549. https://doi.org/10.3103/S0095452723060075
  58. Raj A., Stephens M., Pritchard J.K. 2014. fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics, 197(2): 573–589. https://doi.org/10.1534/genetics.114.164350
  59. Rakhmetov D.B., Blume Ya.B., Yemets A.I., Boychuk Yu.N., Andrushchenko O.L., Verhun O.M., Rakhmetova S.O. 2014. Camelina sativa (L.) Crantz — valuable oil plant. Plant Introduction, 2(62): 50–58. https://doi.org/10.5281/zenodo.1494320
  60. Sakharova V.H., Blume R.Ya., Rabokon A.N., Pirko Ya.V., Mosyakin S.L., Blume Ya.B. 2022. Comparison of methods of DNA extraction from herbarium specimens of little-pod false flax (Camelina microcarpa Andrz. ex DC.). Faktory eksperimental’noyi evolutsii organizmiv, 30: 82–86. https://doi.org/10.7124/FEEO.v30.1457
  61. Sakharova V.H., Blume R.Ya., Rabokon A.N., Pirko Ya.V., Blume Ya.B. 2023. Efficiency of genetic diversity assessment of little-pod false flax (Camelina microcarpa Andrz. ex DC.) in Ukraine using SSR- and TBP-marker systems. Reports of National Academy of Sciences of Ukraine, 4: 85–94. https://doi.org/10.15407/dopovidi2023.04.085
  62. Séguin-Swartz G., Nettleton J.A., Sauder C., Warwick S.I., Gugel R.K. 2013. Hybridization between Camelina sativa (L.) ­Crantz (false flax) and North American Camelina species. Plant Breeding, 132: 390–396. https://doi.org/10.1111/pbr.12067
  63. Shynder O.I., Davydov D.A., Olshanskyi I.G., Levon A.F., Nesyn Yu.D. 2024. New floristic records in Kyiv City and its environs. Ukrainian Botanical Journal, 81(2): 100–144. https://doi.org/10.15407/ukrbotj81.02.100
  64. Singh R., Bollina V., Higgins E.E., Clarke W.E., Eynck C., Sidebottom C., Gugel R., Snowdon R., Parkin I.A. 2015. Single-nucleotide polymorphism identification and genotyping in Camelina sativa. Molecular Breeding, 35(1): 35. https://doi.org/10.1007/s11032-015-0224-6
  65. Tepfer M., Hurel A., Tellier F., Jenczewski E. 2020. Evaluation of the progeny produced by interspecific hybridization between Camelina sativa and C. microcarpa. Annals of Botany, 125(6): 993–1002. https://doi.org/10.1093/aob/mcaa026
  66. Thiers B. 2009–onward. Index Herbariorum. A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available at: https://sweetgum.nybg.org/science/ih/ (Accessed 27 March 2025).
  67. Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(W1): W232–W235. https://doi.org/10.1093/nar/gkw256
  68. Turland N.J., Wiersema J.H., Barrie F.R., Greuter W., Hawksworth D.L., Herendeen P.S., Knapp S., Kusber W.-H., Li D.-Z., Marhold K., May T.W., McNeill J., Monro A.M., Prado J., Price M.J., Smith G.F. 2018. International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress, Shenzhen, China, July 2017 [Regnum Vegetabile, vol. 159]. Glashütten: Koeltz Botanical Books, xxxviii + 254 pp. https://doi.org/10.12705/Code.2018
  69. Vollmann J., Eynck C. 2015. Camelina as a sustainable oilseed crop: Contributions of plant breeding and genetic engineering. Biotechnology Journal, 10: 525–535. https://doi.org/10.1002/biot.201400200
  70. Wang S., Blume R.Y., Zhou Z.-W., Lu S., Nazarenus T.J., Blume Y.B., Xie W., Cahoon E.B., Chen L.-L., Guo L. 2024. Chromosome-level assembly and analysis of Camelina neglecta — a novel diploid model for camelina biotechnology research. Biotechnology for Biofuels and Bioproducts, 17: 17. https://doi.org/10.1186/s13068-024-02466-9
  71. Yakovleva-Nosar S., Lyakh V. 2018. Variability of some productivity traits under the condition of different density of sowing at the false flax (Camelina sativa (L.) Crantz). Cruciferae Newsletter, 37: 3–5.
  72. Yemets A., Radchuk V., Bayer O., Bayer G., Pakhomov A., Baird V., Blume Ya. 2008. Development of transformation vectors based upon a modified plant α-tubulin gene as the selectable marker. Cell Biology International, 32(5): 566–570. https://doi.org/10.1016/j.cellbi.2007.11.012
  73. Zanetti F., Alberghini B., Jeromela A.M., Grahovac N., Rajkovic D., Kiprovski B., Monti A. 2021. Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agronomy for Sustainable Development, 41: 2. https://doi.org/10.1007/s13593-020-00663-y
  74. Žerdoner Čalasan A., Seregin A.P., Hurka H., Hofford N.P., Neuffer B. 2019. The Eurasian steppe belt in time and space: Phylogeny and historical biogeography of the false flax (Camelina Crantz, Camelineae, Brassicaceae). Flora, 260: 151477. https://doi.org/10.1016/j.flora.2019.151477
  75. Zhang C.J., Auer C. 2020. Hybridization between Camelina sativa (L.) Crantz and common Brassica weeds. Industrial Crops and Products, 147: 112240. https://doi.org/10.1016/j.indcrop.2020.112240