ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 5 of 6
Up
Ukr. Bot. J. 2025, 82(2): 128–143
https://doi.org/10.15407/ukrbotj82.02.128
Biotechnology, Physiology and Biochemistry

Effect of melatonin priming on seed germination, carbohydrate metabolism, and antioxidant system in Triticum aestivum (Poaceae) under drought and salt stress

Taraban D.A. 1, 2, Karpets Yu.V. 1, Yastreb T.O. 2, Lugova A.A. 1, Pysarenko V.M. 3, Kolupaev Yu.E. 2, 3
Abstract

Treatment of plants with melatonin (N-acetyl-5-methoxytryptamine, MT) can increase plant resistance to various abiotic stresses, including drought and salinity. However, the effect of melatonin priming of cereal grains, in particular of wheat, on their germination and the state of seedling defence systems under osmotic stress remains insufficiently studied, and this determined the aim of our research. The effect of incubating seeds in a melatonin solution at a concentration of 20 µM for 3 hours, followed by drying, on the germination of seeds of winter common wheat (Triticum aestivum 'Etana'), seedling growth, and the state of their antioxidant and osmoprotective systems under the influence of model drought (15% PEG with a molecular weight of 6000 Da) or salinity (150 mM NaCl) was evaluated. Under the influence of PEG 6000 and especially NaCl, a decrease in seed germination and inhibition of seedling growth were observed. Pretreatment of seeds with melatonin solutions significantly alleviated these effects. Stress factors caused a decrease in amylase activity in grains and sugar content in seedling shoots, and treatment of seeds with melatonin eliminated these effects. Melatonin priming also reduced the generation of reactive oxygen species (ROS) by seedling shoots and the accumulation of the lipid peroxidation product malondialdehyde (MDA) under stress conditions. The high positive correlation of seed germination and shoots growth with amylase activity, sugar content, and catalase activity indicates the contribution of changes in carbohydrate metabolism and the functioning of the antioxidant system to the stress-protective effect of melatonin. At the same time, proline content inversely correlated with germination of seeds and growth but directly correlated with ROS generation and MDA levels, which characterise the development of oxidative stress. It was concluded that melatonin priming of wheat seeds is promising for improving germination processes under adverse conditions.

Keywords: antioxidant system, drought, melatonin, resistance, salt stress, seed germination, Triticum aestivum

Full text: PDF (Ukr) 2.38M

References
  1. Agathokleous E., Zhou B., Xu J., Ioannou A., Feng Z., Saitanis C.J., Frei M., Calabrese E.J., Fotopoulos V. 2021. Exogenous application of melatonin to plants, algae, and harvested products to sustain agricultural productivity and enhance nutritional and nutraceutical value: A meta-analysis. Environmental Research, 200: 111746. https://doi.org/10.1016/j.envres.2021.111746
  2. Akula R., Mukherjee S. 2020. New insights on neurotransmitters signaling mechanisms in plants. Plant Signaling & Behavior, 15(6): 1737450. https://doi.org/10.1080/15592324.2020.1737450
  3. Alybayev S., Smekenov I., Kuanbay A., Sarbassov D., Bissenbaev A. 2024. Gibberellic-acid-dependent expression of α-amylase in wheat aleurone cells is mediated by target of rapamycin (TOR) signaling. Current Plant Biology, 37: 100312. https://doi.org/10.1016/j.cpb.2023.100312
  4. Arnao M.B., Hernández-Ruiz J. 2019. Melatonin: A new plant hormone and/or a plant master regulator? Trends in Plant Science, 24(1): 38–48. https://doi.org/10.1016/j.tplants.2018.10.010
  5. Awan S.A., Khan I., Wang Q., Gao J., Tan X., Yang F. 2023. Pre-treatment of melatonin enhances the seed germination responses and physiological mechanisms of soybean (Glycine max L.) under abiotic stresses. Frontiers in Plant Science, 14: 1149873. https://doi.org/10.3389/fpls.2023.1149873
  6. Ayyaz A., Shahzadi A.K., Fatima S., Yasin G., Zafar U.Z., Athar H.R., Farooq M.A. 2022. Uncovering the role of melatonin in plant stress tolerance. Theoretical and Experimental Plant Physiology, 34: 335–346. https://doi.org/10.1007/s40626-022-00255-z
  7. Bates L.S., Walden R.P., Tear G.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205–207. https://doi.org/10.1007/BF00018060
  8. Chen L., Liu L., Lu B., Ma T., Jiang D., Li J., Zhang K., Sun H., Zhang Y., Bai Z., Li C. 2020. Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.). PLoS ONE, 15(1): e0228241. https://doi.org/10.1371/journal.pone.0228241
  9. Colombage R., Singh M.B., Bhalla P.L. 2023. Melatonin and abiotic stress tolerance in crop plants. International Journal of Molecular Sciences, 24(8): 7447. https://doi.org/10.3390/ijms24087447
  10. Cui G., Zhao X., Liu S., Sun F., Zhang C., Xi Y. 2017. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiology and Biochemistry, 118: 138–149. https://doi.org/10.1016/j.plaphy.2017.06.014
  11. Cui G., Sun F., Gao X., Xie K., Zhang C., Liu S., Xi Y. 2018. Proteomic analysis of melatonin-mediated osmotic tolerance by improving energy metabolism and autophagy in wheat (Triticum aestivum L.). Planta, 248(1): 69–87. https://doi.org/10.1007/s00425-018-2881-2
  12. Fan J., Xie Y., Zhang Z., Chen L. 2018. Melatonin: A multifunctional factor in plants. International Journal of Molecular Sciences, 19(5): 1528. https://doi.org/10.3390/ijms19051528
  13. Fawzi A.F.A, El-Fouly M.M. 1979. Amylase and invertase activities and carbohydrate contents in relation to physiological sink in carnation. Physiologia Plantarum, 47(4): 245–249. https://doi.org/10.1111/j.1399-3054.1979.tb06521.x
  14. Fu Y., Li P., Si Z., Ma S., Gao Y. 2024. Seeds priming with melatonin improves root hydraulic conductivity of wheat varieties under drought, salinity, and combined stress. International Journal of Molecular Sciences, 25: 5055. https://doi.org/10.3390/ijms25095055
  15. Goldstein L.D., Jennings P.H. 1975. The occurrence and development of amylase enzymes in incubated, de-embryonated maize kernels. Plant Physiology, 55(5): 893–898. https://doi.org/10.1104/pp.55.5.893
  16. Guo Y., Li D., Liu L., Sun H., Zhu L., Zhang K., Zhao H., Zhang Y, Li A., Bai Z., Tian L., Dong H., Li C. 2022. Seed priming with melatonin promotes seed germination and seedling growth of Triticale hexaploide L. under PEG-6000 induced drought stress. Frontiers in Plant Science, 13: 932912. https://doi.org/10.3389/fpls.2022.932912
  17. Hassan M.U., Ghareeb R.Y., Nawaz M., Mahmood A., Shah A.N., Abdel-Megeed A., Abdelsalam N.R., Hashem M., Alamri S., Thabit M.A., Qari S.H. 2022. Melatonin: A vital pro-tectant for crops against heat stress: mechanisms and prospects. Agronomy, 12(5): 1116. https://doi.org/10.3390/agronomy12051116
  18. Hossain M.S., Li J., Sikdar A., Hasanuzzaman M., Uzizerimana F., Muhammad I., Yuan Y., Zhang C., Wang C., Feng B. 2020. Exogenous melatonin modulates the physiological and biochemical mechanisms of drought tolerance in Tartary Buckwheat (Fagopyrum tataricum (L.) Gaertn.). Molecules, 25(12): 2828. https://doi.org/10.3390/molecules25122828
  19. Hu M., Shi Z., Zhang Z., Zhang Y., Li H. 2012. Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regulation, 68: 177–188. https://doi.org/10.1007/s10725-012-9705-3
  20. Ismaeil F.M., Ahmed S.E.E., Jabereldar A.A., El-Naim A.M., Ahmed E.E.B.M. 2024. Alleviation of salt stress on seed germination and seedling growth in wheat by seed priming with melatonin. Discovery Agriculture, 10: e8da1557. https://doi.org/10.54905/disssi.v10i21.e8da1557
  21. Jahan M.S., Zhao C.J., Shi L.B., Liang X.R., Jabborova D., Nasar J., Zhou X.B. 2023. Physiological mechanism of melatonin attenuating to osmotic stress tolerance in soybean seedlings. Frontiers in Plant Science, 14: 1193666. https://doi.org/10.3389/fpls.2023.1193666
  22. Jurkonienė S., Mockevičiūtė R., Gavelienė V., Šveikauskas V., Zareyan M., Jankovska-Bortkevič E., Jankauskienė J., Žalnierius T., Kozeko L. 2023. Proline enhances resistance and recovery of oilseed rape after a simulated prolonged drought. Plants, 12(14): 2718. https://doi.org/10.3390/plants12142718
  23. Karpets Yu.V., Kolupaev Y.E., Yastreb T.O., Dmitriev O.P. 2012. Possible pathways of heat resistance induction in plant cells by exogenous nitrogen oxide. Cytology and Genetics, 46(6): 354–359. https://doi.org/10.3103/S0095452712060059
  24. Karpets Yu.V., Taraban D.A., Kokorev A.I., Yastreb T.O., Kobyzeva L.N., Kolupaev Y.E. 2023. Response of wheat seedlings with different drought tolerance to melatonin action under osmotic stress. Agriculture and Forestry, 69(4): 53–69. https://doi.org/10.17707/AgricultForest.69.4.05
  25. Ke Q., Ye J., Wang B., Ren J., Yin L., Deng X., Wang S. 2018. Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Frontiers in Plant Science, 9: 914. https://doi.org/10.3389/fpls.2018.00914
  26. Khan S., Alvi A.F., Fatma M., Al-Hashimi A., Sofo A., Khan N.A. 2024. Relative effects of melatonin and hydrogen sulfide treatments in mitigating salt damage in wheat. Frontiers in Plant Science, 15: 1406092. https://doi.org/10.3389/fpls.2024.1406092
  27. Kolupaev Yu.E., Karpets Yu.V. 2014. Reactive oxygen species and stress signaling in plants. Ukrainian Biochemical Journal, 86(4): 18–35. https://doi.org/10.15407/ubj86.04.018
  28. Kolupaev Yu.E., Horielova E.I., Yastreb T.O., Ryabchun N.I. 2020. State of antioxidant system in triticale seedlings at cold hardening of varieties of different frost resistance. Cereal Research Communications, 48(2): 165–171. https://doi.org/10.1007/s42976-020-00022-3
  29. Kolupaev Yu.E., Taraban D.A., Karpets Yu.V., Makaova B.E., Ryabchun N.I., Dyachenko A.I. Dmitriev O.P. 2023a. Induction of cell protective reactions of Triticum aestivum and Secale cereale to the effect of high temperatures by melatonin. Cytology and Genetics, 57(2): 117–127. https://doi.org/10.3103/S0095452723020068
  30. Kolupaev Yu.E., Yastreb T.O., Ryabchun N.I., Kokorev A.I., Kolomatska V.P., Dmitriev A.P. 2023b. Redox homeostasis of cereals during acclimation to drought. Theoretical and Experimental Plant Physiology, 35(2): 133–168. https://doi.org/10.1007/s40626-023-00271-7
  31. Kolupaev Yu.E., Taraban D.A., Karpets Y.V., Beschasnyi S.P., Kravets O.A., Relina L.I., Yemets A.I., Blume Y.B. 2024a. Melatonin as an emerging new phytohormone and its role in plant adaptation to abiotic stress factors. In: Regulation of adaptive responses in plants. Eds T.O. Yastreb, Yu.E. Kolupaev, A.I. Yemets, Ya.B. Blume. New York: Nova Science Publishers, Inc., pp. 209–257.
  32. Kolupaev Yu.E., Taraban D.A., Kokorev A.I., Yastreb T.O., Pysarenko V.M., Sherstiuk E., Karpets Yu.V. 2024b. Effect of melatonin and hydropriming on germination of aged triticale and rye seeds. Botanica, 30(1): 1–13. https://doi.org/10.35513/Botlit.2024.1.1
  33. Kosakivska I.V., Vedenicheva N.P., Babenko L.M., Voytenko L.V., Romanenko K.O., Vasyuk V.A. 2022. Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Molecular Biology Reports, 49(1): 617–628. https://doi.org/10.1007/s11033-021-06802-2
  34. Kryzhanovsky V.G. 2019. Household and biological peculiarities of wheat winds winters at Mankovsky variety testing station. Naukovi dopovidi NUBiP Ukrainy, 6(82): 15. https://doi.org/10.31548/dopovidi2019.06.015
  35. Li J., Liu J., Zhu T., Zhao C., Li L., Chen M. 2019. The role of melatonin in salt stress responses. International Journal of Molecular Sciences, 20(7): 1735. https://doi.org/10.3390/ijms20071735
  36. Li D., Batchelor W.D., Zhang D., Miao H., Li H., Song S., Li R. 2020. Analysis of melatonin regulation of germination and antioxidant metabolism in different wheat cultivars under polyethylene glycol stress. PLoS ONE, 15(8): e0237536. https://doi.org/10.1371/journal.pone.0237536
  37. Meena M., Divyanshu K., Kumar S., Swapnil P., Zehra A., Shukla V., Yadav M., Upadhyay R.S. 2019. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5(12): e02952. https://doi.org/10.1016/j.heliyon.2019.e02952
  38. Muhammad I., Yang L., Ahmad S., Farooq S., Khan A., Muhammad N., Ullah S., Adnan M., Ali S., Liang Q.P., Zhou X.B. 2023. Melatonin-priming enhances maize seedling drought tolerance by regulating the antioxidant defense system. Plant Physiology, 191(4): 2301–2315. https://doi.org/10.1093/plphys/kiad027
  39. Pan Y., Xu X., Li L., Sun, Q., Wang Q., Huang, H., Tong Z., Zhang J. 2023. Melatonin-mediated development and abiotic stress tolerance in plants. Frontiers in Plant Science, 14: 1100827. https://doi.org/10.3389/fpls.2023.1100827
  40. Raza A., Salehi H., Rahman M.A., Zahid Z., Madadkar Haghjou M., Najafi-Kakavand S., Charagh S., Osman H.S., Albaqami M., Zhuang Y., Siddique K.H.M., Zhuang W. 2022. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Frontiers in Plant Science, 13: 961872. https://doi.org/10.3389/fpls.2022.961872
  41. Sadak M.S. 2016. Mitigation of salinity adverse effects of on wheat by grain priming with melatonin. International Journal of ChemTech Research, 9(2): 85–97.
  42. Sagisaka S. 1976. The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiology, 57: 308–309. https://doi.org/10.1104/pp.57.2.308
  43. Scandalios J.G. 1997. Oxidative stress and the molecular biology of antioxidant defenses. 1st ed. New York: Cold Spring Harbor Laboratory Press, 890 pp.
  44. Sen A., Johnson R., Puthur J.T. 2021. Seed priming: A cost-effective strategy to impart abiotic stress tolerance. In: Plant Perfor­mance Under Environmental Stress. Ed. A. Husen. Cham: Springer, pp. 459–480. https://doi.org/10.1007/978-3-030-78521-5_18
  45. Sghayar S., Debez A., Lucchini G., Abruzzese A., Zorrig W., Negrini N., Morgutti S., Abdelly C., Sacchi G.A., Pecchioni N., Vaccino P. 2023. Seed priming mitigates high salinity impact on germination of bread wheat (Triticum aestivum L.) by improving carbohydrate and protein mobilization. Plant Direct, 7(6): e497. https://doi.org/10.1002/pld3.497
  46. Shaheen S., Lalarukh I., Ahmad J., Zulqadar S.A., Alharbi S.A., Hareem M., Alarfaj A.A., Ansari M.J. 2024. Physio-biochemical mechanism of melatonin seed priming in stimulating growth and drought tolerance in bread wheat. BMC Plant Biology, 24: 918. https://doi.org/10.1186/s12870-024-05639-8
  47. Siddiqui M.H., Alamri S., Al-Khaishany M.Y., Khan M.N., Al-Amri A., Ali H.M., Alaraidh I.A., Alsahli A.A. 2019. Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. International Journal of Molecular Sciences, 20(2): 353. https://doi.org/10.3390/ijms20020353
  48. Singh M., Singh A.K., Nehal N., Sharma N. 2018. Effect of proline on germination and seedling growth of rice (Oryza sativa L.) under salt stress. Journal of Pharmacognosy and Phytochemistry, 7(1): 2449–2452.
  49. Taboada J., Reiter R.J., Palma J.M., Corpas F.J. 2023. Melatonin and the metabolism of reactive oxygen species (ROS) in high­er plants. In: Melatonin: Role in Plant Signaling, Growth and Stress Tolerance. Plant in Challenging Environments. Vol. 4. Eds S. Mukherjee, F.J. Corpas. Cham: Springer, pp. 3–25. https://doi.org/10.1007/978-3-031-40173-2_1
  50. Talaat N.B. 2021. Polyamine and nitrogen metabolism regulation by melatonin and salicylic acid combined treatment as a repressor for salt toxicity in wheat (Triticum aestivum L.) plants. Plant Growth Regulation, 95: 315–329. https://doi.org/10.1007/s10725-021-00740-6
  51. Thakur M., Sharma A.D. 2005. Salt-stress-induced proline accumulation in germinating embryos: Evidence suggesting a role of proline in seed germination. Journal of Arid Environments, 62(3): 517–523. https://doi.org/10.1016/j.jaridenv.2005.01.005
  52. Tiwari R.K., Lal M.K., Kumar R., Chourasia K.N., Naga K.C., Kumar D., Das S.K., Zinta G. 2021. Mechanistic insights on melatonin-mediated drought stress mitigation in plants. Physiologia Plantarum, 172(2): 1212–1226. https://doi.org/10.1111/ppl.13307
  53. Wang J., Lv P., Yan D., Zhang Z., Xu X., Wang T., Wang Y., Peng Z., Yu C., Gao Y., Duan L., Li R. 2022. Exogenous melatonin improves seed germination of wheat (Triticum aestivum L.) under salt stress. International Journal of Molecular Sciences, 23: 8436. https://doi.org/10.3390/ijms23158436
  54. Wang J., Yan D., Liu R., Wang T., Lian Y., Lu Z., Hong Y., Wang Y., Li R. 2024. The physiological and molecular mechanisms of exogenous melatonin promote the seed germination of maize (Zea mays L.) under salt stress. Plants, 13: 2142. https://doi.org/10.3390/plants13152142
  55. Waqas M., Korres N.E., Khan M.D., Nizami Al.-S., Deeba F., Ali I., Hussain H. 2019. Advances in the concept and methods of seed priming. In: Priming and Pretreatment of Seeds and Seedlings. Eds M. Hasanuzzaman, V. Fotopoulos. Singapore: Springer, pp. 11–41. https://doi.org/10.1007/978-981-13-8625-1_2
  56. Yadav R., Saini R., Adhikary A., Kumar S. 2022. Unravelling cross priming induced heat stress, combinatorial heat and
  57. drought stress response in contrasting chickpea varieties. Plant Physiology and Biochemistry, 180(1): 91–105. https://doi.org/10.1016/j.plaphy.2022.03.030
  58. Yan D., Wang J., Lu Z., Liu R., Hong Y., Su B., Wang Y., Peng Z., Yu C., Gao Y., Liu Z., Xu Z., Duan L., Li R. 2023. Melatonin-mediated enhancement of photosynthetic capacity and photoprotection improves salt tolerance in wheat. Plants, 12: 3984. https://doi.org/10.3390/plants12233984
  59. Zamani Z., Amiri H., Ismaili A. 2019. Improving drought stress tolerance in fenugreek (Trigonella foenum-graecum) by exogenous melatonin. Plant Biosystems, 154(5): 643–655. https://doi.org/10.1080/11263504.2019.1674398
  60. Zhang Z., Liu L., Li H., Zhang S., Fu X., Zhai X., Yang N., Shen J., Li R. Li D. 2022. Exogenous melatonin promotes the salt tolerance by removing active oxygen and maintaining ion balance in wheat (Triticum aestivum L.). Frontiers in Plant Science, 12: 787062. https://doi.org/10.3389/fpls.2021.787062
  61. Zeng W., Mostafa S., Lu Z., Jin B. 2022. Melatonin-mediated abiotic stress tolerance in plants. Frontiers in Plant Science, 13: 847175. https://doi.org/10.3389/fpls.2022.847175
  62. Zhao K., Fan H., Zhou S., Song J. 2003. Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under isoosmotic salt and water stress. Plant Science, 165: 837–844. https://doi.org/10.1016/S0168-9452(03)00282-6
  63. Zhao J., Hu J. 2023. Melatonin: Current status and future perspectives in horticultural plants. Frontiers in Plant Science, 14: 1140803. https://doi.org/10.3389/fpls.2023.1140803