ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 1 of 5
Up
Ukr. Bot. J. 2025, 82(1): 3–30
https://doi.org/10.15407/ukrbotj82.01.003
Plant Taxonomy, Geography and Floristics

Terrestrial algae and cyanobacteria of the Holosiiv National Nature Park (Kyiv, Ukraine), with the description of Leptochlorella arboricola sp. nov. (Trebouxiophyceae, Chlorophyta)

Mikhailyuk T.I. 1, Vinogradova O.M. 1, Demchenko E.M. 1, Petlovana V.R. 2, Glaser K. 3, Karsten U. 4,5
Abstract

The article provides the results of a study on terrestrial algae inhabiting various substrates in the Holosiiv National Nature Park, which was established to protect the remnants of natural ecosystems in the Kyiv metropolitan area, Ukraine. Totally, 75 species were identified: Cyanobacteria (10 species), Chlorophyta (52), Charophyta (7), and Heterokontophyta (6). The largest number of species was recorded on concrete (44 species) and dead wood (41); both substrates exhibited the most diverse composition of dominant species of algae. Less species were found on tree trunks (34), soil crusts (25), and fruiting bodies of the polypore fungus (18). The genera Klebsormidium (5 species) and Stichococcus (4 species) were the most diversely represented on different substrates. Representatives of green algae, Stichococcus bacillaris, Coccomyxa subellipsoidea, Interfilum terricola, Desmococcus olivaceus, Elliptochloris subsphaerica, and Trentepohlia cf. umbrina, were most frequent in the studied habitats. Some new and noteworthy taxa have been revealed using molecular phylogenetic methods. Among them, three genera (Wilmottia, Chromochloris, and Leptochlorella) and five species (Wilmottia murrayi, Drouetiella epilithica, Chromochloris zofingiensis, Neocystis mucosa, and Coccomyxa arvernensis) were for the first time recorded for the algal flora of Ukraine. In addition, five rare species of the genera Coelastrella, Pseudochlorella, Coenochloris, Dictyochloropsis, and Coccomyxa are also reported. Finally, a new species of the genus Leptochlorella, L. arboricola Mikhailyuk, is described.

Supplementary Material. Supplementary Material (Tables S1–S4, Figs. S1–S4) is available on this website: ukrbotj82-01-003-S1.pdf (1,498 KB)

Keywords: algae, biological soil crusts, cyanobacteria, dead wood, forest phytocenoses, fruiting bodies of polypore fungi, ITS, Leptochlorella arboricola, rbcL, stony substrates, tree trunks, Ukraine, 16S/18S rRNA

Full text: PDF (Eng) 6.92M

References
  1. Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(3): 716–723. https://doi.org/10.1109/TAC.1974.1100705
  2. Algae of Ukraine: diversity, nomenclature, taxonomy, ecology and geography. 2006, 2009, 2011, 2014. Vol. 1–4. Eds P.M. Tsarenko, S.P. Wasser, E. Nevo. Ruggell: A.R.G. Gantner Verlag K.-G.
  3. Arguelles E.D. 2019. New records of corticolous microalgae and cyanobacteria for Philippine algal flora from Mt. Makiling Forest Reserve. Journal of Microbiology, Biotechnology and Food Sciences, 9(1): 1–8. https://doi.org/10.15414/jmbfs.2019.9.1.1-8
  4. Barkmann J.J. 1958. Phytosociology and ecology of cryptogamic epiphytes. Assen: Van Gorkum, xiii + 628 pp. https://doi.org/10.1017/S0024282971000227
  5. Baumann K., Glaser K., Mutz J.-E., Karsten U., MacLennan A., Hu Y., Michalik D., Kruse J., Eckhardt K.-U., Schall P., Leinweber P. 2017. Biological soil crusts of temperate forests: Their role in P cycling. Soil Biology and Biochemistry, 109, 156–166. https://doi.org/10.1016/j.soilbio.2017.02.011
  6. Baumann K., Eckhardt K.U., Acksel A., Gros P., Glaser K., Gillespie A.W., Karsten U., Leinweber P. 2021. Contribution of biological soilcrusts to soil organic matter composition and stability in temperate forests. Soil Biology and Biochemistry, 160(1): 108315. https://doi.org/10.1016/j.soilbio.2021.108315
  7. Belnap J., Lange O.L. (eds.). 2001. Biological Soil Crusts: Structure, Function, and Management. Berlin: Springer, 503 p.
  8. Berezovska V.Yu. 2018. Algae of water bodies of the botanical reserve of national importance Lisnyki (Holosiiv National Nature Park). Chornomorski Botanical Journal, 14(2): 162–172. https://doi.org/10.14255/2308-9628/18.142/6
  9. Bischoff H.W., Bold H.C. 1963. Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. University Texas Publications, 6318: 1–95.
  10. Büdel B., Darienko T., Deutschewitz K., Dojani S., Friedl T., Mohr K.I., Salisch M., Reisser W., Weber B. 2009. Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microbial Ecology, 57: 229–247. https://doi.org/10.1007/s00248-008-9449-9
  11. Büdel B., Colesie C., Green T.A., Grube M., Lazaro R., Loewen-Schneider K., Maier S., Peer T., Pintado A., Raggio J. 2014. Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodiversity and Conservation, 23(7): 1639–1658. http://dx.doi.org/10.1007/s10531-014-0645-2
  12. Byun Y., Han K. 2009. PseudoViewer3: generating planar drawings of large-scale RNA structures with pseudoknots. Bioinformatics, 25(11): 1435–1437. https://doi.org/10.1093/bioinformatics/btp252
  13. Darienko T., Gustavs L., Mudimu O., Menendes C., Schumann R., Karsten U., Friedl T., Pröschold T. 2010. Chloroidium, a common terrestrial coccoid green alga previously assigned to Chlorella (Trebouxiophyceae, Chlorophyta). European Journal of Phycology, 45(1): 79–95. https://doi.org/10.1080/09670260903362820
  14. Darienko T., Gustavs L., Eggert A., Wolf W., Pröschold T. 2015. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLOS One, 10: 1–31. https://doi.org/10.1371/journal.pone.0127838
  15. Darienko T., Gustavs L., Pröschold T. 2016. Species concept and nomenclatural changes within the genera Elliptochloris and Pseudochlorella (Trebouxiophyceae) based on an integrative approach. Journal of Phycology, 52: 1125–1145. https://doi.org/10.1111/jpy.12481
  16. Decree of the President of Ukraine 794/2007 (2007). https://zakon.rada.gov.ua/laws/show/794/2007#Text
  17. Demchenko E.M. 1996. Soil algae of the pine forest of the Lisnyki protected site. Ukrainian Botanical Journal, 53(3): 296–298.
  18. Demchenko E.M. 2000. On the vitality of some species of soil algae stored in a dried state. In: Modern Problems of Botany and Ecology. Materials of the conference of young scientists-botanists of Ukraine (13–16 September 2000, Chernigiv–Sedniv). Kyiv: Centre for Environmental Education and Information, pp. 12–13.
  19. De Wever A., Leliaert F., Verleyen E., Vanormelingen P., Van der Gucht K., Hodgson D.A., Sabbe K., Vyverman W. 2009. Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proceedings of the Royal Society B, 276(1673): 3591–3599. https://doi.org/10.1098/rspb.2009.0994
  20. Donner A., Ryšánek D., Mikhailyuk T., Karsten U. 2017. Ecophysiological traits of various genotypes of a green key alga in biological soil crusts from the semi-arid Colorado Plateau, USA. Journal of Applied Phycology, 29(6): 2911–2923. https://doi.org/10.1007/s10811-017-1158-7
  21. Dubyna D.V., Tsarenko M.P., Yakubenko B.E. 2002. Phytodiversity of water bodies of Didorivskyi tract (Holosievsky District of Kyiv). Proceedings of the National Aviation University, 53: 257–264.
  22. Dubyna D.V., Tsarenko M.P., Yakubenko B.E. 2005. Phytodiversity of water bodies of Kytaiv tract (Holosievsky District of Kyiv). Proceedings of the National Aviation University, 53: 24–30.
  23. Eliáš M., Neustupa J., Pažoutová M., Škaloud P. 2013. A case of taxonomic inflation in coccoid algae: Ellipsoidion parvum and Neocystis vischeri are conspecific with Neocystis (=Nephrodiella) brevis (Chlorophyta, Trebouxiophyceae). Phytotaxa, 76: 15–27. https://doi.org/10.11646/phytotaxa.76.2.1
  24. Ettl H., Gärtner G. 2014. Syllabus der Boden-, Luft- und Flechtenalgen. 2nd ed. Munich: Spektrum Akademischer Verlag, 773 pp. https://link.springer.com/book/10.1007/978-3-642-39462-1
  25. Evans R.D., Johansen J.R. 1999. Microbiotic crusts and ecosystem processes. Critical Reviews in Plant Sciences, 18(2): 183–225. https://doi.org/10.1080/07352689991309199
  26. Ferrari C., Santunione G., Libbra A., Muscio A., Sgarbi E., Siligardi C., Barozzi G.S. 2015. Review on the influence of biological deterioration on the surface properties of building materials: organisms, materials, and methods. International Journal of Design & Nature and Ecodynamics, 10: 21–39. https://doi.org/10.2495/DNE-V10-N1-21-39
  27. Frolova I.O. 1955. Peculiarities of the algal flora of the flowing Holosiivskyi ponds in the vicinity of Kyiv. Scientific Notes of Kyiv University, 13(15) (Proceedings of the O.V. Fomin Botanical Garden No. 24): 141–153.
  28. Fučíková K., Lewis L.A. 2012. Intersection of Chlorella, Muriella and Bracteacoccus: Resurecting the genus Chromochloris Kol et Chodat (Chlorophyceae, Chlorophyta). Fottea, 12(1): 83–93. https://doi.org/10.5507/fot.2012.007
  29. Fučíková K., Lewis P.O., Lewis L.A. 2014. Widespread desert affiliation of Trebouxiophycean algae (Trebouxiophyceae, Chlorophyta) including discovery of three new desert genera. Phycological Research, 62(4): 294–305. https://doi.org/10.1111/pre.12062
  30. Glaser K., Donner A., Albrecht M., Mikhailyuk T., Karsten U. 2017. Habitat-specific composition of morphotypes with low genetic diversity in the green algal genus Klebsormidium (Streptophyta) isolated from biological soil crusts in Central European grasslands and forests. European Journal of Phycology, 52 (2): 188–199. https://doi.org/10.1080/09670262.2016.1235730
  31. Glaser K., Baumann K., Leinweber P., Mikhailyuk T., Karsten U. 2018. Algal richness in BSCs in forests under different management intensity with some implications for P cycling. Biogeosciences, 15(13): 4181–4192. https://doi.org/10.5194/bg-15-4181-2018
  32. Guiry M.D., Guiry G.M. 2025. AlgaeBase. World electronic publication. National University of Ireland. Galway. Available at: http://www.algaebase.org/
  33. Hallmann C., Rüdrich J., Enseleit M., Friedl T., Hoppert M. 2011. Microbial diversity on a marble monument: a case study. Environmental Earth Sciences, 63: 1701–1711. https://doi.org/10.1007/s12665-010-0772-3
  34. Hallmann C., Wedekind W., Hause-Reitner D., Hoppert M. 2013. Cryptogam covers on sepulchral monuments and re-colonization of a marble surface after cleaning. Environmental Earth Sciences, 69: 1149–1160. https://doi.org/10.1007/s12665-012-2213-y
  35. Hallmann C., Hoppert M., Mudimu O., Friedl T. 2017. Biodiversity of green algae covering artificial hard substrate surfaces in a suburban environment: A case study using molecular approaches. Journal of Phycology, 52(5): 732–744. https://doi.org/10.1111/jpy.12437
  36. Hauer T., Mühlsteinová R., Bohunická M. 2015. Diversity of cyanobacteria on rock surfaces. Biodiversity and Conservation, 24: 759–779. https://doi.org/10.1007/s10531-015-0890-z
  37. Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35: 518–522. https://doi.org/10.1093/molbev/msx281
  38. Hoffmann L. 1989. Algae of terrestrial habitats. Botanical Review, 55(2): 77–105. https://doi.org/10.1007/DF02858529
  39. Johansen J.R. 1999. Diatoms of aerial habitats. In: The diatoms: applications for the environmental and earth sciences. Eds E.F. Stoermer, J.P. Smol. Cambridge, UK: Cambridge University Press, pp. 264–273. https://doi.org/10.1017/CBO9780511613005.013
  40. John D.M. 1988. Algal growth on buildings: a general review and methods of treatment. Biodeterioration Abstracts, 2(67): 81–102.
  41. Karsten U., Peine M., Gustavs L., Schumann R. 2022. Apatococcus lobatus (Trebouxiophyceae) dominates green algal biofilms on roof tiles in Northern Germany. Nova Hedwigia, 114: 303–320. https://doi.org/10.1127/nova_hedwigia/2022/0691
  42. Kaštovský J. 2023. Welcome to the jungle!: An overview of modern taxonomy of cyanobacteria. Hydrobiologia, 851: 1063–1077. https://doi.org/10.1007/s10750-023-05356-7
  43. Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30: 772–780. https://doi.org/10.1093/molbev/mst010
  44. Kharkongor D., Ramanujam P. 2014. Diversity and species somposition of subaerial algal communities in forested areas of Meghalaya, India. International Journal of Biodiversity, 3: 1–10. https://doi.org/10.1155/2014/456202
  45. Kim D.-H., Lee N.-J., Wang H.-R., Lim A.-S., Lee O.-M. 2023. Drouetiella epilithica sp. nov. and Drouetiella lurida (Oculatellaceae, Synechococcales) isolated in the Republic of Korea based on the polyphasic approach. Phycological Research, 71(3): 1–14. https://doi.org/10.1111/pre.12515
  46. Klochenko P.D., Tsarenko P.M. 2007. Phytoplankton as an indicator of the ecological state of the Kytaiv Ponds (Kyiv). Proceedings of the National Aviation University, 107: 66–72.
  47. Klochenko P.D., Gorbunova Z.N., Marchenko G.V., Tsarenko P.M., Yakubenko B.E. 2006. Peculiarities of the ecological state of the Horikhovatsky ponds (Holosiivo, Kyiv). Proceedings of the National Aviation University, 95: 54–65.
  48. Klochenko P.D., Shevchenko T.F., Kharchenko T.V. 2022. Phytoepiphyton of water bodies of the Holosiiv National Nature Park (Ukraine). Hydrobiological Journal, 58(1): 16–29.
  49. Klochenko P.D., Shevchenko T.F., Lilitskaya G.G. 2018. Bioindication of the ecological state of water bodies of the Holosiiv National Nature Park. Hydrobiological Journal, 54(3): 18–28. https://doi.org/10.1615/HydrobJ.v58.i4.30
  50. Klochenko P.D., Tsarenko P.M., Ivanova I.Yu. 2010. Peculiarities of the phytoplankton species composition of reservoirs of the Holosiiv National Nature Park (Kyiv). Hydrobiological Journal, 46(1): 37–46.
  51. Komárek J. 2013. Cyanoprokaryota. 3. Heterocytous Genera. In: Süsswasserflora von Mitteleuropa. Bd 19/3. Berlin; Heidelberg: Springer Spectrum, 1130 pp.
  52. Komárek J., Anagnostidis K. 2005. Cyanoprokaryota. 2. Oscillatoriales. In: Süsswasserflora von Mitteleuropa. Bd 19/2. München: Elsevier Spectrum, 759 pp.
  53. Kostikov I.Yu., Romanenko P.O., Demchenko E.M., Darienko T.M., Mikhailyuk T.I. Rybchinskiy O.V., Solonenko A.M. 2001. The soil algae of Ukraine (history and methods of investigation, classification system, floristics). Kyiv: Phytosociocenter. 300 p.
  54. Kostikov I.Yu., Demchenko E.N., Berezovskaya M.A. 2009. Microalgae culture collection at the Taras Shevchenko National University, Kyiv. Catalogue of strains (2008). Chornomorski Botanical Journal, 5(1): 37–79.
  55. Kulichová J., Škaloud P., Neustupa J. 2014. Molecular diversity of green corticolous microalgae from two sub-Mediterranean European localities. European Journal of Phycology, 49(3): 345–355. https://doi.org/10.1080/09670262.2014.945190
  56. Leliaert F., Smith D.R., Moreau H., Herron M.D., Verbruggen H., Delwiche C.F., De Clerck O. 2012. Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 31(1): 1–46. https://doi.org/10.1080/07352689.2001.615705
  57. Lemes-da-Silva N.M., Branco L.H.Z., Necchi-Júnior O. 2010. Corticolous green algae from tropical forest remnants in the northwest region of São Paulo State, Brazil. Brasilian Journal of Botany, 33(2): 215–226. https://doi.org/10.1590/S0100-84042010000200003
  58. Lokhorst G.M. 1996. Comparative taxonomic studies on the genus Klebsormidium (Charophyceae) in Europe. Cryptogamic Studies, 5: 1–55.
  59. Macedo M.F., Miller A.Z., Dionísio A., Saiz-Jimenez C. 2009. Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Microbiology, 155: 3476–3490. https://doi.org/10.1099/mic.0.032508-0
  60. Mikhailyuk T.I. 1999. Eusubaerial algae of the Kaniv Nature Reserve. Ukrainian Botanical Journal, 56(5): 507–514.
  61. Mikhailyuk T.I., Darienko T.M. 2013. Algae of terrestrial habitats. Hutsulshchyna National Nature Park. Prorochuk V.V. et al. (eds.). Lviv; Kosiv: NRF Maps and Atlases, 407 p.
  62. Mikhailyuk T.I., Darienko T.M. 2013. Algae of terrestrial habitats. Hutsulshchyna National Nature Park. Ed. V.V. Prorochuk. Lviv; Kosiv: NRF Maps and Atlases, 407 pp.
  63. Mikhailyuk T.I., Kondratyuk S.Ya., Nyporko S.O., Darienko T.M., Demchenko E.M., Voytsekhovich A.O. 2011. Lichens, mosses and terrestrial algae of granites of Ukraine. Kyiv: Alterpress, 398 pp.
  64. Mikhailyuk T., Glaser K., Holzinger A., Karsten U. 2015. Biodiversity of Klebsormidium (Streptophyta) from Alpine biological soil crusts (Alps, Tyrol, Austria, and Italy). Journal of Phycology, 51: 750–767. https://doi.org/10.1111/jpy.12316
  65. Mikhailyuk T.I., Vinogradova O.N., Glaser K., Karsten U. 2016. New taxa for the flora of Ukraine, in the context of modern approaches to taxonomy of Cyanoprokaryota/Cyanobacteria. International Journal on Algae, 18(4): 301–320. https://doi.org/10.1615/InterJAlgae.v18.i4.10
  66. Mikhailyuk T.I., Vinogradova O.M., Glaser K., Rybalka N.A., Demchenko E., Karsten U. 2021. Algae of biological soil crusts from sand dunes of the Danube Delta Biosphere Reserve (Odessa Region, Ukraine). International Journal on Algae, 23(1): 7–42. https://doi.org/10.1615/InterJAlgae.v23.i1.20
  67. Mikhailyuk T.I., Vinogradova O.M., Holzinger A., Glaser K., Akimov Yu., Karsten U. 2022. Timaviella dunensis sp. nov. from sand dunes of the Baltic Sea, Germany, and emendation of Timaviella edaphica (Elenkin) O.M. Vynogr. & Mikhailyuk (Synechococcales, Cyanobacteria) based on an integrative approach. Phytotaxa, 532(3): 192–208. https://doi.org/10.11646/phytotaxa.532.3.1
  68. Mikhailyuk T.I., Vinogradova O.M., Gromakova A.B., Glaser K., Karsten U. 2023. A polyphasic approach leading to the discovery of new taxa of terrestrial Cyanobacteria for the flora of Ukraine. International Journal on Algae, 25(4): 301–322. http://dx.doi.org/10.1615/InterJAlgae.v25.i4.10
  69. Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37: 1530–1534. https://doi.org/10.1093/molbev/msaa015
  70. Mukhin V.A., Patova E.N., Kiseleva I.S., Neustroeva N., Novakovskaya I.V. 2016. Mycetobiont algae-symbionts of wood-destroying fungi. Ecologia, 2: 103–108. https://doi.org/10.7868/S03670597160020086
  71. Mukhin V.A., Neustroeva N., Novakovskaya I.V., Patova E.N. 2017. Host-depending variability of mycetobiont algae. Mordovia University Bulletin, 27(3): 291–296.
  72. Neustupa J., Škaloud P. 2008. Diversity of subaerial algae and cyanobacteria on tree bark in tropical mountain habitats. Biologia, 63(6): 806–812. https://doi.org/10.2478/s11756-008-0102-3
  73. Neustupa J., Škaloud P. 2010. Diversity of subaerial algae and cyanobacteria growing on bark and wood in the lowland tropical forests of Singapore. Plant Ecology and Evolution, 143(1): 51–62. https://doi.org/10.5091/plecevo.2010.417
  74. Neustupa J., Štifterová A. 2013. Distribution patterns of subaerial corticolous microalgae in two European regions. Plant Ecology and Evolution, 146(3): 279–289. https://doi.org/10.5091/plecevo.2013.862
  75. Neustupa J., Němcová Y., Veselá J., Steinová J., Škaloud P. 2013a. Leptochlorella corticola gen. et sp. nov. and Kalinella apyrenoidosa sp. nov.: two new Chlorella-like green microalgae (Trebouxiophyceae, Chlorophyta) from subaerial habitats. International Journal of Systematic and Evolutionary Microbiology, 63(1): 377–387. https://doi.org/10.1099/ijs.0.047944-0
  76. Neustupa J., Němcová Y., Veselá J., Steinová J., Škaloud P. 2013b. Parachloroidium gen. nov. (Trebouxiophyceae, Chlorophyta), a novel genus of coccoid green algae from subaerial corticolous biofilms. Phycologia, 52(5): 411–421. https://doi.org/10.2216/13-142.2
  77. Nienow J.A. 1996. Ecology of subaerial algae. Nowa Hedwigia, 112: 537–552.
  78. Nowicka-Krawczyk P., Komar M., Gutarowska B. 2022. Towards understanding the link between the deterioration of building materials and the nature of aerophytic green algae. Science of the Total Environment, 802: 149856. https://doi.org/10.1016/j.scitotenv.2021.149856
  79. Nozaki H., Ito M., Sano R., Uchida H., Watanabe M.M., Kuroiwa T. 1995. Phylogenetic relationships within the colonial Volvocales (Chlorophyta) inferred from rbcL gene sequence data. Journal of Phycology, 31: 970–979. https://doi.org/10.1111/j.0022-3646.1995.00970.x
  80. Onishchenko V.A., Priadko O.I., Arap R.J. 2012. Holosiiv NNP. In: Phytodiversity of nature reserves and national nature parks of Ukraine. Part 2. National nature parks. Eds V.A. Onishchenko, T.L. Andrienko. Kyiv: Phytosociocenter, pp. 139–151.
  81. Onishchenko V.A., Pryadko O.I., Virchenko V.M., Arap R.Ya., Orlov O.O., Datsiuk V.V. 2016. Vascular plants and bryophytes of the Holosiivskyi National Nature Park. Kyiv: Alterpress, 94 pp.
  82. Prodromus of spore plants of Ukraine: algae. Book 2. 2024. Ed. P.M. Tsarenko. Kyiv: Naukova Dumka, 679 pp.
  83. Pröschold T., Marin B., Schlösser U.G., Melkonian M. 2001. Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist, 152(4): 265–300. https://doi.org/10.1078/1434-4610-00068
  84. Stoyneva M.P., Uzunov B.A., Gärtner, G. 2015. Aerophytic green algae, epimycotic on Fomes fomentarius (L. ex Fr.) Kickx. In: Annual of Sofia University "St. Kliment Ohridski", Faculty of Biology. Book 2 — Botany. Vol. 99. Sofia: St. Kliment Ohridski University press, pp. 19–25. http://dx.doi.org/10.60066/GSU.BIOFAC.Bot.99.19-25
  85. Radzimovskyi D.O. 1928. To the microflora of reservoirs in the vicinity of Kyiv. I. Plankton of "Didova Makitra". Proceedings of the Physics and Mathematics Department of the Ukrainian Academy of Sciences, 10(2): 99–112.
  86. Rindi F., Guiry M.D. 2003. Composition and distribution of subaerial algal assemblages in Galway City, western Ireland. Cryptogamie Algologie, 24(3): 245–267.
  87. Rindi F., Guiry M.D. 2004. Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia, 43(3): 225–235. https://doi.org/10.2216/i0031-8884-43-3-225.1
  88. Rindi F., Mikhailyuk T.I., Sluiman H.J., Friedl T., López-Bautista J.M. 2011. Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Molecular Phylogenetics and Evolution, 58(2): 218–231. https://doi.org/10.1016/j.ympev.2010.11.030
  89. Ronquist F., Huelsenbeck J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(2): 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  90. Rybalka N., Mikhailyuk T., Darienko T., Dultz S., Blanke M., Friedl T. 2020. Genotypic and phylogenetic diversity of new isolates of terrestrial Xanthophyceae (Stramenopiles) from maritime sandy habitats. Phycologia, 5(6): 506–514. http://dx.doi.org/10.1080/00318884.2020.1802950
  91. Saraphol S., Rindi F., Sanevas N. 2024. Diversity of epiphytic subaerial algal communities in Bangkok, Thailand, and their potential bioindicator with air pollution. Diversity, 16(1): 55. https://doi.org/10.3390/d16010055
  92. Schulz K., Mikhailyuk T., Dreßler M., Leinweber P., Karsten U. 2016. Biological soil crusts from coastal dunes at the Baltic Sea: cyanobacterial and algal biodiversity and related soil properties. Microbial Ecology, 71: 178–193. https://doi.org/10.1007/s00248-015-0691-7
  93. Škaloud P., Friedl T., Hallmann Ch., Beck A., Dal Grande F. 2016. Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 52(4): 599–617. https://doi.org/10.1111/jpy.12422
  94. Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriology Reviews, 35: 171–205. https://doi.org/10.1128/br.35.2.171-205.1971
  95. Strunecký O., Ivanova A.P., Mareš J. 2023. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. Journal of Phycology, 59(1): 12–51. https://doi.org/10.1111/jpy.13304
  96. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12): 2725–2729. https://doi.org/10.1093/molbev/mst197
  97. Thomas A.D., Dougill A.J. 2006. Distribution and characteristics of cyanobacterial soil crusts in the Molopo Basin, South Africa. Journal of Arid Environments, 64: 270–283. https://doi.org/10.1016/j.jaridenv.2005.04.011
  98. Tsarenko P.M., Yakubenko B.E., Klochenko P.D., Medvid V.O. 2004. Algae flora of water bodies in Kyiv and its environs. Proceedings of the National Aviation University, 72: 56–66.
  99. Vondrák J., Svoboda S., Zíbarová L., Štenclová L., Mareš J., Pouska V., Košnar J., Kubásek J. 2023. Alcobiosis, an algal-fungal association on the threshold of lichenization. Scientific Reports, 13: 2957 https://doi.org/10.1038/s41598-023-29384-4
  100. Voytsekhovich A.A. 2008. Photobionts and algae-epiphytes of lithophilic lichens of the Coastal Ridge of the Karadag Nature Reserve (Crimea, Ukraine). In: Current Problems of Botany and Ecology. Issue 2. Kyiv: Phytosociocentr, pp. 46–51.
  101. Voytsekhovich A.O., Mikhailyuk T.I., Darienko T.M. 2009. Algae of terrestrial habitats of the Karagach ridge (Karadag Nature Reserve (Ukraine). In: Collection of scientific works dedicated to the 95th anniversary of the Karadag Scientific Station and the 30th anniversary of the Karadag Nature Reserve of the National Academy of Sciences of Ukraine. Eds A.V. Gaevskaya, A.L. Morozova. Sevastopol: Ecosi-Hydrophysics, pp. 50–60.
  102. Voytsekhovich A., Mikhailyuk T., Akimov Y., Ordynets A., Gustavs L., Karsten U. 2015. Optionally lichenized fungi of Hyphodontia (Agaricomycetes, Schizoporaceae). In: 8th International Symbiosis Society (ISS) Congress, Lisbon (Portugal), 12–18 July 2015. Vol. 1. Lisbon, p. 217.
  103. Weber B., Büdel B., Belnap J. 2016. Biological soil crusts: An organizing principle in drylands. Cham: Springer, 549 pp. https://doi.org/10.1007/978-3-319-30214-0
  104. Wong F.K., Lacap D.C., Lau M.C., Aitchison J.C., Cowan D.A., Pointing S.B. 2010. Hypolithic microbial community of quartz pavement in the high-altitude tundra of central Tibet. Microbial Ecology, 60 (4): 730–739. https://doi.org/10.1007/s00248-010-9653-2
  105. Zub L.M., Dubrovsky Y.V., Savytsky O.L. 2007. Peculiarities of the ecological state of cascades of channel ponds of the Holosiivskyi Forest. In: Ecology of the Holosiivskyi forest. Kyiv: Phoenix, pp. 302–308.
  106. Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nuclear Acids Research, 31(13): 3406–3415. https://doi.org/10.1093/nar/gkg595