ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 5 of 5
Up
Ukr. Bot. J. 2023, 80(3): 283–291
https://doi.org/10.15407/ukrbotj80.03.283
Cell Biology and Molecular Biology

An alternative application of some SSR DNA markers in experimental mycology

Boiko S.M.
Abstract

The expediency of using unique SSR DNA-markers of Schizophyllum commune for population genetic assays in various fungal species has been demonstrated. In Auricularia auricula-judae and Irpex lacteus, we observed formation of heterogeneous amplicons mostly up to 500 bp in length that ensured their high resolution and facilitated data analysis. The established sets of molecular markers are efficient for DNA-fingerprinting of S. commune, I. lacteus, and A. auricula-judae, as well as are prospective for species of the genus Pleurotus, but need to be further enlarged.

Keywords: amplicons heterogeneity, DNA markers, genetic profiling, genomic DNA, primers, Schizophyllum commune

Full text: PDF (Ukr) 1.76M

References
  1. Annesi T., Coppola R., Motta E. 2003. Isozyme analysis on some wood decay fungi. Journal of Plant Pathology, 85(2): 87–90.
  2. Anusha N.C., Umikalsom M.S., Ling T.C., Ariff A.B. 2012. Relationship between fungal growth morphologies and ability to secrete lipase in solid state fermentation. Asian Journal of Biotechnology, 4: 15–29. https://doi.org/10.3923/ajbkr.2012.15.29
  3. Boiko S.M. 2018. Pool of endoglucanase genes in Schizophyllum commune Fr.: Fr. (Basidiomycetes) on the territory of Ukraine. Acta Biologica Szegediensis, 62(1): 53–59. https://doi.org/10.14232/abs.2018.1.53-59
  4. Boiko S. 2021. Optimization of the catalytic process and increase of the Irpex lacteus cellulases yield for saccharification. Bioresource Technology Reports, 15: 100780. https://doi.org/10.1016/j.biteb.2021.100780
  5. Boiko S.M. 2022. Identification of novel SSR markers for predicting the geographic origin of fungus Schizophyllum commune Fr. Fungal Biology, 126(11–12): 764–774. https://doi.org/10.1016/j.funbio.2022.09.005
  6. Boiko S., Netsvetov M., Radchenko V. 2023. Cellulose biosaccharification by Irpex lacteus wood decay fungus. Maderas-Ciencia y Tecnologia, 25: 1–20. https://revistas.ubiobio.cl/index.php/MCT/article/view/5912
  7. Broders K.D., Woeste K.E., San Miguel P.J., Westerman R.P., Boland G.J. 2011. Discovery of single-nucleotide polymorphisms (SNPs) in the uncharacterized genome of the ascomycete Ophiognomonia clavigignenti-juglandacearum from 454 sequence data. Molecular Ecology Resources, 11(4): 693–702. https://doi.org/10.1111/j.1755-0998.2011.02998.x
  8. Czyzewska U., Bartoszewicz M., Siemieniuk M., Tylicki A. 2018. Genetic relationships and population structure of Malassezia pachydermatis strains isolated from dogs with otitis externa and healthy dogs. Mycologia, 110(4): 666–676. https://doi.org/10.1080/00275514.2018.1495981
  9. Foulongne-Oriol M., Rodier A., Caumont P., Spataro C., Savoie J.M. 2011. Agaricus bisporus cultivars: Hidden diversity beyond apparent uniformity? In: Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products. Vol. 2. Arcachon, France: INRA, pp. 9–16. Available at: https://hal.inrae.fr/hal-02748163
  10. Fu N., Wang P.Y., Liu X.D., Shen H.L. 2014. Use of EST-SSR markers for evaluating genetic diversity and fingerprinting celery (Apium graveolens L.) cultivars. Molecules (Basel, Switzerland), 19(2): 1939–1955. https://doi.org/10.3390/molecules19021939
  11. García-Béjar B., Árevalo-Villena M., Briones A. 2021. Characterization of yeast population from unstudied natural sources in La Mancha region. Journal of Applied Microbiology, 130(3): 650–664. https://doi.org/10.1111/jam.14795
  12. Hamrick J.L., Lichtwardt R.W., Lan C. 1986. Levels of isozyme variation within and among Histoplasma capsulatum localities. Transactions of the Kansas Academy of Science, 89(1–2): 49–56. https://doi.org/10.2307/3627732
  13. He Y., Chen J., Tang C., Deng Q., Guo L., Cheng Y., Li Z., Wang T., Xu J., Gao C. 2022. Genetic diversity and population structure of Fusarium commune causing strawberry root rot in southcentral China. Genes, 13(5): 899. https://doi.org/10.3390/genes13050899
  14. Huang H., Dane F., Kubisiak T. 1998. Allozyme and RAPD analysis of the genetic diversity and geographic variation in wild populations of the American chestnut (Fagaceae). American Journal of Botany, 85(7): 1013.
  15. Ilin A., Raiko T. 2010. Practical approaches to Principal Component Analysis in the presence of missing values. Journal of Machine Learning Research, 11: 1957–2000.
  16. Jackson D.A. 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, 74(8): 2204–2214. https://doi.org/10.2307/1939574
  17. Johannesson H., Stenlid J. 2003. Molecular markers reveal genetic isolation and phylogeography of the S and F intersterility groups of the wood-decay fungus Heterobasidion annosum. Molecular Phylogenetics and Evolution, 29(1): 94–101. https://doi.org/10.1016/s1055-7903(03)00087-3
  18. Klaassen C.H.W., Osherov N. 2007. Aspergillus strain typing in the genomics era. Studies in Mycology, 59: 47–51. https://doi.org/10.3114/sim.2007.59.06
  19. Lange O., Schifino-Wittmann M.T. 2000. Isozyme variation in wild and cultivated species of the genus Trifolium L. (Leguminosae). Annals of Botany, 86(2): 339–345. https://doi.org/10.1006/anbo.2000.1190
  20. Li G., Wang Y., Zhu P., Zhao G., Liu C., Zhao H. 2022. Functional characterization of laccase isozyme (PoLcc1) from the edible mushroom Pleurotus ostreatus involved in lignin degradation in cotton straw. International Journal of Molecular Sciences, 23(21): 13545. https://doi.org/10.3390/ijms232113545
  21. Lin P., Yan Z.F., Kook M., Li C.T., Yi T.H. 2022. Genetic and chemical diversity of edible mushroom Pleurotus species. BioMed Research International, Article ID 6068185. https://doi.org/10.1155/2022/6068185
  22. Liu J.H., Ding F.H., Song H.Y., Chen M.H., Hu D.M. 2022. Analysis of genetic diversity among Chinese Cyclocybe chaxingu strains using ISSR and SRAP markers. PeerJ, 10: e14037. https://doi.org/10.7717/peerj.14037
  23. Sharma S., Sandhu D.K., Bagga P.S. 1988. Isozyme polymorphism of beta-glucosidase in Aspergillus nidulans. Biochemical Genetics, 26(5–6): 331–342. https://doi.org/10.1007/BF02401787
  24. Singh K.N., Rawat S., Kumar K., Agarwal S.K., Goel S., Jagannath A., Agarwal M. 2022. Identification of significant marker-trait associations for Fusarium wilt resistance in a genetically diverse core collection of safflower using AFLP and SSR markers. Journal of Applied Genetics, 63(3): 447–462. https://doi.org/10.1007/s13353-022-00694-z
  25. Stefańska I., Kwiecień E., Górzyńska M., Sałamaszyńska-Guz A., Rzewuska M. 2022. RAPD-PCR-based fingerprinting method as a tool for epidemiological analysis of Trueperella pyogenes infections. Pathogens (Basel, Switzerland), 11(5): 562. https://doi.org/10.3390/pathogens11050562
  26. Tra Bi C.Y., Amoikon T.L.S., Kouakou C.A., Noemie J., Lucas M., Grondin C., Legras J.L., N'guessan F.K., Djeni T.N., Djè M.K., Casaregola S. 2019. Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from traditional alcoholic beverages of Côte d'Ivoire. International Journal of Food Microbiology, 297: 1–10. https://doi.org/10.1016/j.ijfoodmicro.2019.03.001
  27. Urbanelli S., Della Rosa V., Fanelli C., Fabbri A.A., Reverberi M. 2003. Genetic diversity and population structure of the Italian fungi belonging to the taxa Pleurotus eryngii (DC.:Fr.) Quèl and P. ferulae (DC.:Fr.) Quèl. Heredity, 90(3): 253–259. https://doi.org/10.1038/sj.hdy.6800239
  28. Valencia-Ledezma O.E., Castro-Fuentes C.A., Duarte-Escalante E., Frías-De-León M.G., Reyes-Montes M.D.R. 2022. Selection of polymorphic patterns obtained by RAPD-PCR through qualitative and quantitative analyses to differentiate Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 8(3): 296. https://doi.org/10.3390/jof8030296
  29. Vilgalys R., Sun B.L. 1994. Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proceedings of the National Academy of Sciences of the United States of America, 91(10): 4599–4603. https://doi.org/10.1073/pnas.91.10.4599
  30. Welsh J., McClelland M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18(24): 7213–7218. https://doi.org/10.1093/nar/18.24.7213
  31. Williams J.G., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22): 6531–6535. https://doi.org/10.1093/nar/18.22.6531
  32. Wojciechowska-Koszko I., Kwiatkowski P., Roszkowska P., Krasnodębksa-Szponder B., Sławiński M., Gabrych A., Giedrys-Kalemba S., Dołęgowska B., Kowalczyk E., Sienkiewicz M. 2022. Genetic diversity of Candida spp. isolates colonizing twins and their family members. Pathogens (Basel, Switzerland), 11(12): 1532. https://doi.org/10.3390/pathogens11121532
  33. Wyss P. 1996. The use of RAPD for isolate identification of arbuscular mycorrhizal fungi. Methods in Molecular Biology (Clifton, N.J.), 50: 199–207. https://doi.org/10.1385/0-89603-323-6:199
  34. Znidarsic P., Pavko A. 2001. The morphology of filamentous fungi in submerged cultivations as a bioprocess parameter. Food Technology and Biotechnology, 39(3): 237–252.