Ukr. Bot. J. 2023, 80(3): 283–291 https://doi.org/10.15407/ukrbotj80.03.283Cell Biology and Molecular Biology
An alternative application of some SSR DNA markers in experimental mycology
Boiko S.M.- Institute for Evolutionary Ecology National Academy of Sciences of Ukraine, 37 Lebedeva Str., Kyiv 03143, Ukraine
Abstract
The expediency of using unique SSR DNA-markers of Schizophyllum commune for population genetic assays in various fungal species has been demonstrated. In Auricularia auricula-judae and Irpex lacteus, we observed formation of heterogeneous amplicons mostly up to 500 bp in length that ensured their high resolution and facilitated data analysis. The established sets of molecular markers are efficient for DNA-fingerprinting of S. commune, I. lacteus, and A. auricula-judae, as well as are prospective for species of the genus Pleurotus, but need to be further enlarged.
Keywords: amplicons heterogeneity, DNA markers, genetic profiling, genomic DNA, primers, Schizophyllum commune
Full text: PDF (Ukr) 1.76M
References
- Annesi T., Coppola R., Motta E. 2003. Isozyme analysis on some wood decay fungi. Journal of Plant Pathology, 85(2): 87–90.
- Anusha N.C., Umikalsom M.S., Ling T.C., Ariff A.B. 2012. Relationship between fungal growth morphologies and ability to secrete lipase in solid state fermentation. Asian Journal of Biotechnology, 4: 15–29. https://doi.org/10.3923/ajbkr.2012.15.29
- Boiko S.M. 2018. Pool of endoglucanase genes in Schizophyllum commune Fr.: Fr. (Basidiomycetes) on the territory of Ukraine. Acta Biologica Szegediensis, 62(1): 53–59. https://doi.org/10.14232/abs.2018.1.53-59
- Boiko S. 2021. Optimization of the catalytic process and increase of the Irpex lacteus cellulases yield for saccharification. Bioresource Technology Reports, 15: 100780. https://doi.org/10.1016/j.biteb.2021.100780
- Boiko S.M. 2022. Identification of novel SSR markers for predicting the geographic origin of fungus Schizophyllum commune Fr. Fungal Biology, 126(11–12): 764–774. https://doi.org/10.1016/j.funbio.2022.09.005
- Boiko S., Netsvetov M., Radchenko V. 2023. Cellulose biosaccharification by Irpex lacteus wood decay fungus. Maderas-Ciencia y Tecnologia, 25: 1–20. https://revistas.ubiobio.cl/index.php/MCT/article/view/5912
- Broders K.D., Woeste K.E., San Miguel P.J., Westerman R.P., Boland G.J. 2011. Discovery of single-nucleotide polymorphisms (SNPs) in the uncharacterized genome of the ascomycete Ophiognomonia clavigignenti-juglandacearum from 454 sequence data. Molecular Ecology Resources, 11(4): 693–702. https://doi.org/10.1111/j.1755-0998.2011.02998.x
- Czyzewska U., Bartoszewicz M., Siemieniuk M., Tylicki A. 2018. Genetic relationships and population structure of Malassezia pachydermatis strains isolated from dogs with otitis externa and healthy dogs. Mycologia, 110(4): 666–676. https://doi.org/10.1080/00275514.2018.1495981
- Foulongne-Oriol M., Rodier A., Caumont P., Spataro C., Savoie J.M. 2011. Agaricus bisporus cultivars: Hidden diversity beyond apparent uniformity? In: Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products. Vol. 2. Arcachon, France: INRA, pp. 9–16. Available at: https://hal.inrae.fr/hal-02748163
- Fu N., Wang P.Y., Liu X.D., Shen H.L. 2014. Use of EST-SSR markers for evaluating genetic diversity and fingerprinting celery (Apium graveolens L.) cultivars. Molecules (Basel, Switzerland), 19(2): 1939–1955. https://doi.org/10.3390/molecules19021939
- García-Béjar B., Árevalo-Villena M., Briones A. 2021. Characterization of yeast population from unstudied natural sources in La Mancha region. Journal of Applied Microbiology, 130(3): 650–664. https://doi.org/10.1111/jam.14795
- Hamrick J.L., Lichtwardt R.W., Lan C. 1986. Levels of isozyme variation within and among Histoplasma capsulatum localities. Transactions of the Kansas Academy of Science, 89(1–2): 49–56. https://doi.org/10.2307/3627732
- He Y., Chen J., Tang C., Deng Q., Guo L., Cheng Y., Li Z., Wang T., Xu J., Gao C. 2022. Genetic diversity and population structure of Fusarium commune causing strawberry root rot in southcentral China. Genes, 13(5): 899. https://doi.org/10.3390/genes13050899
- Huang H., Dane F., Kubisiak T. 1998. Allozyme and RAPD analysis of the genetic diversity and geographic variation in wild populations of the American chestnut (Fagaceae). American Journal of Botany, 85(7): 1013.
- Ilin A., Raiko T. 2010. Practical approaches to Principal Component Analysis in the presence of missing values. Journal of Machine Learning Research, 11: 1957–2000.
- Jackson D.A. 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, 74(8): 2204–2214. https://doi.org/10.2307/1939574
- Johannesson H., Stenlid J. 2003. Molecular markers reveal genetic isolation and phylogeography of the S and F intersterility groups of the wood-decay fungus Heterobasidion annosum. Molecular Phylogenetics and Evolution, 29(1): 94–101. https://doi.org/10.1016/s1055-7903(03)00087-3
- Klaassen C.H.W., Osherov N. 2007. Aspergillus strain typing in the genomics era. Studies in Mycology, 59: 47–51. https://doi.org/10.3114/sim.2007.59.06
- Lange O., Schifino-Wittmann M.T. 2000. Isozyme variation in wild and cultivated species of the genus Trifolium L. (Leguminosae). Annals of Botany, 86(2): 339–345. https://doi.org/10.1006/anbo.2000.1190
- Li G., Wang Y., Zhu P., Zhao G., Liu C., Zhao H. 2022. Functional characterization of laccase isozyme (PoLcc1) from the edible mushroom Pleurotus ostreatus involved in lignin degradation in cotton straw. International Journal of Molecular Sciences, 23(21): 13545. https://doi.org/10.3390/ijms232113545
- Lin P., Yan Z.F., Kook M., Li C.T., Yi T.H. 2022. Genetic and chemical diversity of edible mushroom Pleurotus species. BioMed Research International, Article ID 6068185. https://doi.org/10.1155/2022/6068185
- Liu J.H., Ding F.H., Song H.Y., Chen M.H., Hu D.M. 2022. Analysis of genetic diversity among Chinese Cyclocybe chaxingu strains using ISSR and SRAP markers. PeerJ, 10: e14037. https://doi.org/10.7717/peerj.14037
- Sharma S., Sandhu D.K., Bagga P.S. 1988. Isozyme polymorphism of beta-glucosidase in Aspergillus nidulans. Biochemical Genetics, 26(5–6): 331–342. https://doi.org/10.1007/BF02401787
- Singh K.N., Rawat S., Kumar K., Agarwal S.K., Goel S., Jagannath A., Agarwal M. 2022. Identification of significant marker-trait associations for Fusarium wilt resistance in a genetically diverse core collection of safflower using AFLP and SSR markers. Journal of Applied Genetics, 63(3): 447–462. https://doi.org/10.1007/s13353-022-00694-z
- Stefańska I., Kwiecień E., Górzyńska M., Sałamaszyńska-Guz A., Rzewuska M. 2022. RAPD-PCR-based fingerprinting method as a tool for epidemiological analysis of Trueperella pyogenes infections. Pathogens (Basel, Switzerland), 11(5): 562. https://doi.org/10.3390/pathogens11050562
- Tra Bi C.Y., Amoikon T.L.S., Kouakou C.A., Noemie J., Lucas M., Grondin C., Legras J.L., N'guessan F.K., Djeni T.N., Djè M.K., Casaregola S. 2019. Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from traditional alcoholic beverages of Côte d'Ivoire. International Journal of Food Microbiology, 297: 1–10. https://doi.org/10.1016/j.ijfoodmicro.2019.03.001
- Urbanelli S., Della Rosa V., Fanelli C., Fabbri A.A., Reverberi M. 2003. Genetic diversity and population structure of the Italian fungi belonging to the taxa Pleurotus eryngii (DC.:Fr.) Quèl and P. ferulae (DC.:Fr.) Quèl. Heredity, 90(3): 253–259. https://doi.org/10.1038/sj.hdy.6800239
- Valencia-Ledezma O.E., Castro-Fuentes C.A., Duarte-Escalante E., Frías-De-León M.G., Reyes-Montes M.D.R. 2022. Selection of polymorphic patterns obtained by RAPD-PCR through qualitative and quantitative analyses to differentiate Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 8(3): 296. https://doi.org/10.3390/jof8030296
- Vilgalys R., Sun B.L. 1994. Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proceedings of the National Academy of Sciences of the United States of America, 91(10): 4599–4603. https://doi.org/10.1073/pnas.91.10.4599
- Welsh J., McClelland M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18(24): 7213–7218. https://doi.org/10.1093/nar/18.24.7213
- Williams J.G., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22): 6531–6535. https://doi.org/10.1093/nar/18.22.6531
- Wojciechowska-Koszko I., Kwiatkowski P., Roszkowska P., Krasnodębksa-Szponder B., Sławiński M., Gabrych A., Giedrys-Kalemba S., Dołęgowska B., Kowalczyk E., Sienkiewicz M. 2022. Genetic diversity of Candida spp. isolates colonizing twins and their family members. Pathogens (Basel, Switzerland), 11(12): 1532. https://doi.org/10.3390/pathogens11121532
- Wyss P. 1996. The use of RAPD for isolate identification of arbuscular mycorrhizal fungi. Methods in Molecular Biology (Clifton, N.J.), 50: 199–207. https://doi.org/10.1385/0-89603-323-6:199
- Znidarsic P., Pavko A. 2001. The morphology of filamentous fungi in submerged cultivations as a bioprocess parameter. Food Technology and Biotechnology, 39(3): 237–252.