ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 4 of 5
Up
Ukr. Bot. J. 2023, 80(3): 267–282
https://doi.org/10.15407/ukrbotj80.03.267
Biotechnology, Physiology and Biochemistry

Biogenic volatile organic substances of forests and their influence on climate

Batsmanova L.M.1, Taran N.Yu.1, Kosyk O.I.1, Zaimenko N.V.2
Abstract

The article analyzes and summarizes data of scientific publications related to biogenic volatile organic compounds (BVOCs) of forests, their impact on atmospheric processes and climate. Studies of BVOCs of forests attracted the attention of many scientists ruring recent decades, including such aspects asmechanisms of synthesis and emissions, chemical composition, influence of biotic and abiotic factors. It was noted that during processes of their life activities, higher plants emit volatile organic substances into the air, which affects the chemical composition and physical state of the atmosphere, and adaptation of forests to ecological stress associated with climate change. BVOCs play a key role in the ozone formation and quenching, resulting in the formation of oxidation products — secondary organic aerosols that scatter sunlight and affect the formation of clouds and, ultimately, the climate. The need to take into account the functional dynamics of BVOCs at the ecosystem level is demonstrated: from the interaction of different types of ecosystems to the degradation of atmospheric compounds and potential functions of products of their reactions.

Keywords: biogenic volatile organic substances of plants, climate change, ecosystem, environmental stress, forests, lipophilic substances, ozone, secondary organic aerosols, terpenoids

Full text: PDF (Ukr) 349K

References
  1. Aalto J., Kolari P., Hari P., Kerminen V., Schiestl-Aalto P., Aaltonen H., Levula J., Siivola E., Kulmala M., Back J. 2014. New foliage growth is a signifcant, unaccounted source for volatiles in boreal evergreen forests. Biogeosciences, 11: 1331–1344. https://doi.org/10.5194/bg-11-1331-2014
  2. Adebesin F., Widhalm J.R., Boachon B., Lefevre F., Pierman B., Lynch J.H., Alam I., Junqueira B., Benke R., Ray S., Porter J.A., Yanagisawa M., Wetzstein H.Y., Morgan J.A., Boutry M., Schuurink R.C., Dudareva N. 2017. Emission of volatile organic compounds from petunia fowers is facilitated by an ABC transporter. Science, 356: 1386–1388. https://doi.org/10.1126/science.aan0826
  3. Alessio G.A., De Lillis M., Fanelli M., Pinelli P. 2004. Direct and indirect impacts of fire on the isoprenoids emission from Mediterranean vegetation. Functional Ecology, 18(3): 357–364. https://doi.org/10.1111/j.0269-8463.2004.00833.x
  4. Ameye M., Allmann S., Verwaeren J., Smagghe G., Haesaert G., Schuurink R.C., Audenaert K. 2018. Green leaf volatile production by plants: a meta-analysis. New Phytologist, 220: 666–683. https://doi.org/10.1111/nph.14671
  5. Arimura G., Matsui K., Koeduka T., Holopainen J.K. 2017. Biosynthesis and regulation of plant volatiles, and their functional roles in ecosystem interactions and global environmental changes. In: Arimura G., Mafei M. (eds). Plant specialized metabolism: genomics, biochemistry, and biological functions. Boca Raton, Florida: CRC Press, pp. 185–237.
  6. Atkinson R. 2000. Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 34: 2063–2101. https://doi.org/10.1016/S1352-2310(99)00460-4
  7. Atkinson R., Arey J. 2003. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmospheric Environment, 37: 197–219. https://doi.org/10.1016/S1352-2310(03)00391-1
  8. Bäck J., Aalto J., Henriksson M., Hakola H., He Q., Boy M. 2012. Chemodiversity of a Scots pine stand and implications for terpene air concentrations. Biogeosciences, 9: 689–702. https://doi.org/10.5194/bg-9-689-2012
  9. Bao H., Kondo A., Kaga A., Tada M., Sakaguti K., Inoue Y., Shimoda Y., Narumi D., Machimura T., 2008. Biogenic volatile organic compound emission potential of forests and paddy fields in the Kinki region of Japan. Environmental Research, 106: 156–169. https://doi.org/10.1016/j.envres.2007.09.009
  10. Berndt T., Mender B., Scholz W., Fischer L., Herrmann H., Kulmala M., Hansel A. 2018. Accretion product formation from ozonolysis and OH radical reaction of alpha-pinene: mechanistic insight and the infuence of isoprene and ethylene. Environmental Science & Technology, 52: 11069–11077. https://doi.org/10.1021/acs.est.8b02210
  11. Blande J.D., Holopainen J.K., Niinemets U. 2014. Plant volatiles in polluted atmospheres: stress responses and signal degradation. Plant, Cell and Environment, 37: 1892–1904. https://doi.org/10.1111/pce.12352
  12. Bonan G.B. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefts of forests. Science, 320: 1444–1449. https://doi.org/10.1126/science.1155121
  13. Carlton A.G., Wiedinmyer C., Kroll J.H. 2009. A review of secondary organic aerosol (SOA) formation from isoprene. Atmospheric Chemistry and Physics, 9: 4987–5005. https://doi.org/10.5194/acp-9-4987-2009
  14. Degenhardt J., Koellner T.G., Gershenzon J. 2009. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 70: 1621–1637. https://doi.org/10.1016/j.phytochem.2009.07.030
  15. Dicke M., Gols R., Ludeking D., Posthumus M.A. 1999. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. Journal of Chemical Ecology, 25: 1907–1922. https://doi.org/10.1023/A:1020942102181
  16. Ditengou F.A., Mueller A., Rosenkranz M., Felten J., Lasok H., van Doorn M.M., Legue V., Palme K., Schnitzler J., Polle A. 2015. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Communications, 6: 6279. https://doi.org/10.1038/ncomms7279
  17. Dudareva N., Klempien A., Muhlemann J.K., Kaplan I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198: 16–32. https://doi.org/10.1111/nph.12145
  18. Ehn M., Thornton J.A., Kleist E., Sipilä M., Junninen H., Pullinen I., Springer M., Rubach F., Tillmann R., Lee B., Lopez-Hilfker F., Andres S., Acir I.-H., Rissanen M., Jokinen T., Schobesberger S., Kangasluoma J., Kontkanen J., Nieminen T., Kurtén T., Nielsen L.B., Jørgensen S., Kjaergaard H.G., Canagaratna M., Dal Maso M., Berndt T., Petäjä T., Wahner A., Kerminen V.-M., Kulmala M., Worsnop D.R., Wildt J., Thomas F., Mentel T.F. 2014. A large source of low-volatility secondary organic aerosol. Nature, 506: 476–479. https://doi.org/10.1038/nature13032
  19. Eller A.S.D., Harley P., Monson R.K. 2013. Potential contribution of exposed resin to ecosystem emissions of monoterpenes. Atmospheric Environment, 77: 440–444. http://dx.doi.org/10.1016/j.atmosenv.2013.05.028
  20. Fält-Nardmann J.J., Tikkanen O.-P., Ruohomäki K., Otto L.-F., Leinonen R., Pöyry J., Saikkonen K., Neuvonen S. 2018. The recent northward expansion of Lymantria monacha in relation to realised changes in temperatures of diferent seasons. Forest Ecology and Management, 427: 96–105. https://doi.org/10.1016/j.foreco.2018.05.053
  21. Fini A., Brunetti C., Loreto F., Centritto M., Ferrini F., Tattini M. 2017. Isoprene responses and functions in plants challenged by environmental pressures associated to climate change. Front Plant Science, 8: 1281. https://doi.org/10.3389/fpls.2017.01281
  22. Finlayson-Pitts B.J. 2017. Introductory lecture: atmospheric chemistry in the Anthropocene. Faraday Discussions, 200: 11–58. https://doi.org/10.1039/c7fd00161d
  23. Finnerty P.B., Stutz R.S., Price C.J., Banks P.B., McArthur C. 2017. Leaf odour cues enable non-random foraging by mammalian herbivores. Journal of Animal Ecology, 86: 1317–1328. https://doi.org/10.1111/1365-2656.12748
  24. Flexas J., Bota J., Loreto F., Cornic G., Sharkey T.D. 2004. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C(3) plants. Plant Biology, 6: 269–279. https://doi.org/10.1055/s-2004-820867
  25. Friedman B., Farmer D.K. 2018. SOA and gas phase organic acid yields from the sequential photooxidation of seven monoterpenes. Atmospheric Environment, 187: 335–345. https://doi.org/10.1016/j.atmosenv.2018.06.003
  26. Geron C.D., Arnts R.R. 2010. Seasonal monoterpene and sesquiterpene emissions from Pinus taeda and Pinus virginiana. Atmospheric Environment, 44: 4240–4251. https://doi.org/10.1016/j.atmosenv.2010.06.054
  27. Ghimire R.P., Markkanen J.M., Kivimäenpää M., Lyytikäinen-Saarenmaa P., Holopainen J.K. 2013. Needle removal by pine sawfy larvae increases branch-level VOC emissions and reduces below-ground emissions of scots pine. Environmental Science & Technology, 47(9): 4325–4332. https://doi.org/10.1021/es4006064
  28. Ghimire R.P., Kivimäenpää M., Blomqvist M., Holopainen T., Lyytikäinen-Saarenmaa P., Holopainen J.K. 2016. Effect of bark beetle (Ips typographus L.) attack on bark VOC emissions of Norway spruce (Picea abies Karst.) trees. Atmospheric Environment, 126: 145–152. https://ui.adsabs.harvard.edu/link_gateway/2016AtmEn.126..145G/doi:10.1016/j.atmosenv.2015.11.049
  29. Ghirardo A., Gutknecht J., Zimmer I., Brüeggemann N., Schnitzler J. 2011. Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: Online tracing of C translocation dynamics in poplar plants. PLoS ONE, 6(2): e17393. https://doi.org/10.1371%2Fjournal.pone.0017393
  30. Ghirardo A., Koch K., Taipale R., Zimmer I., Schnitzler J.P., Rinne J. 2010. Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis. Plant Cell and Environment, 33: 781–792. https://doi.org/10.1111/j.1365-3040.2009.02104.x
  31. Gilg A., Bearfeld J., Tittiger C., Welch W., Blomquist G. 2005. Isolation and functional expression of an animal geranyl diphosphate synthase and its role in bark beetle pheromone biosynthesis. Proceeding of the National Academy of Sciences (USA), 102(28): 9760–9765. https://doi.org/10.1073/pnas.0503277102
  32. Goh C.H., Ko S.M., Koh S., Kim Y.J., Bae H.J. 2012. Photosynthesis and environments: photoinhibition and repair mechanisms in plants. Journal of. Plant Biology, 55: 93–101. https://doi.org/10.1007/s12374-011-9195-2
  33. Gray D., Lerdau M., Goldstein A. 2003. Infuences of temperature history, water stress, and needle age on methylbutenol emissions. Ecology, 84: 765–776.
  34. Guenther A.B., Jiang X., Heald C.L., Sakulyanontvittaya T., Duhl T., Emmons L.K., Wang X. 2012. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5: 1471–1492. https://doi.org/10.5194/gmd-5-1471-2012
  35. Haapanala S., Hakola H., Hellen H., Vestenius M., Levula J., Rinne J. 2012. Is forest management a signifcant source of monoterpenes into the boreal atmosphere? Biogeosciences, 9: 1291–1300. http://dx.doi.org/10.5194/bgd-8-8067-2011
  36. Hansen U., Seufert G. 1999. Terpenoid emission from Citrus sinensis (L.) OSBECK under drought stress. Physics and Chemistry of the Earth, Part B, 24: 681–687. https://doi.org/10.1016/S1464-1909(99)00065-9
  37. Harrison S.P., Morfopoulos C., Dani K.G.S, Prentice I.C., Arneth A., Atwell B.J., Barkley M.P., Leishman M.R., Loreto F., Medlyn B.E., Niinemets U., Possell M., Penuelas J., Wright I.J. 2013. Volatile isoprenoid emissions from plastid to planet. New Phytologist, 197: 49–57. https://doi.org/10.1111/nph.12021
  38. Hellen H., Praplan A.P., Tykkä T., Ylivinkka I., Vakkari V., Bäck J., Petäjä T., Kulmala M., Hakola H. 2018. Long-term measurements of volatile organic compounds highlight the importance of sesquiterpenes for the atmospheric chemistry of a boreal forest. Atmospheric Chemistry and Physics, 18: 13839–13863. https://doi.org/10.5194/acp-18-13839-2018
  39. Holopainen J.K., Gershenzon J. 2010. Multiple stress factors and the emission of plant VOCs. Trends in Plant Science, 15: 176–184. https://doi.org/10.1016/j.tplants.2010.01.006
  40. Holopainen J.K., Kivimäenpää M., Nizkorodov S.A. 2017. Plant-derived secondary organic material in the air and ecosystems. Trends in Plant Science, 22(9): 744–753. https://doi.org/10.1016/j.tplants.2017.07.004
  41. Hopkins R.J., van Dam N.M., van Loon J.J.A. 2009. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annual Review of Entomology, 54: 57–83. https://doi.org/10.1029/2005GB002590
  42. Huang J., Hartmann H., Hellén H., Wisthaler A., Perreca E., Weinhold A., Rücker A., van Dam N.M., Gershenzon J., Trumbore S., Behrend T. 2018. New perspectives on CO2, temperature, and light effects on BVOC emissions using online measurements by PTR-MS and cavity ring-down spectroscopy. Environment Science and Technology, 52(23): 13811–13823. https://doi.org/10.1021/acs.est.8b01435
  43. Iason G.R., O’Reilly-Wapstra J.M., Brewer M.J., Summers R.W., Moore B.D. 2011. Do multiple herbivores maintain chemical diversity of Scots pine monoterpenes. Philosophical Transactions of the Royal Society B: Biological Sciences, 366: 1337–1345. https://doi.org/10.1098%2Frstb.2010.0236
  44. Jardine K.J., Jardine A.B., Holm J.A., Lombardozzi D.L., Negron-Juarez R.I., Martin S.T., Beller H.R., Gimenez B.O., Higuchi N., Chambers J.Q. 2017. Monoterpene ‘thermometer’ of tropical forest-atmosphere response to climate warming. Plant, Cell and Environment, 40: 441–452. https://doi.org/10.1111/pce.12879
  45. Jeon W., Lee S., Lee H., Park C., Kim D., Park S. 2014. A study on high ozone formation mechanism associated with change of NOx/ VOCs ratio at a rural area in the Korean Peninsula. Atmospheric Environment, 89: 10–21. http://dx.doi.org/10.1016/j.atmosenv.2014.02.005
  46. Joó É., Dewulf J., Amelynck C., Schoon N., Pokorska O., Simpraga M., Steppe K., Aubinet M., Van Langenhove H. 2011. Constitutive versus heat and biotic stress induced BVOC emissions in Pseudotsuga menziesii. Atmospheric Environment, 45: 3655–3662. https://doi.org/10.1016/j.atmosenv.2011.04.048
  47. Joutsensaari J., Yli-Pirilä P., Korhonen H., Arola A., Blande J.D., Heijari J., Kivimäenpää M., Mikkonen S., Hao L., Miettinen P., Lyytikäinen-Saarenmaa P., Faiola C.L., Laaksonen A., Holopainen J.K. 2015. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests. Atmospheric Chemistry and Physics, 15: 12139–12157. https://doi.org/10.5194/acp-15-12139-2015
  48. Kaplan J.O., Folberth G., Hauglustaine D.A. 2006. Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fuctuations of atmospheric methane concentrations. Global Biogeochemical Cycles, 20(2): GB2016 (16 pp.). https://doi.org/10.1029/2005GB002590
  49. Karl M., Guenther A., Koble R., Leip A., Seufert G. 2009. A new European plant-specifc emission inventory of biogenic volatile organic compounds for use in atmospheric transport models. Biogeosciences, 6: 1059–1087. https://doi.org/10.5194/bg-6-1059-2009
  50. Kesselmeier J., Staudt M. 1999. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. Journal of Atmospheric Chemistry, 33: 23–88. https://doi.org/10.1023/A:1006127516791
  51. Kesselmeier J., Ciccioli P., Kuhn U., Stefani P., Biesenthal T., Rottenberger S., Wolf A., Vitullo M., Valentini R., Nobre A., Kabat P., Andreae M. 2002. Volatile organic compound emissions in relation to plant carbon fxation and the terrestrial carbon budget. Global Biogeochemical Cycles, 16: 1126. https://doi.org/10.1029/2001GB001813
  52. Kirkby J., Duplissy J., Sengupta K., Frege C., Gordon H., Williamson C., Heinritzi M., Simon M., Yan C., Almeida J., Tröstl J., Nieminen T., Ortega I.K., Wagner R., Adamov A., Amorim A., Bernhammer A.-K., Bianchi F., Breitenlechner M., Brilke S., Chen X., Craven J., Dias A., Ehrhart S., Flagan R.C., Franchin A., Fuchs C., Guida R., Hakala J., Hoyle C.R., Jokinen T., Junninen H., Kangasluoma J., Kim J., Krapf M., Kürten A., Laaksonen A., Lehtipalo K., Makhmutov V., Mathot S., Molteni U., Onnela A., Peräkylä O., Piel F., Petäjä T., Praplan A.P., Pringle K., Rap A., Richards N.A.D., Riipinen I., Rissanen M.P., Rondo L., Sarnela N., Schobesberger S., Scott C.E., Seinfeld J.H., Sipilä M., Steiner G., Stozhkov Y., Stratmann F., Tomé A., Virtanen A., Vogel A.L., Wagner A.C., Wagner P.E., Weingartner E., Wimmer D., Winkler P.M., Ye P., Zhang X., Hansel A., Dommen J., Donahue N.M., Worsnop D.R., Baltensperger U., Kulmala M., Carslaw K.S., Curtius J. 2016. Ion-induced nucleation of pure biogenic particles. Nature, 533: 521–526. https://doi.org/10.1038/nature17953
  53. Kivimäenpää M., Markkanen J.M., Ghimire R.P., Holopainen T., Vuorinen M., Holopainen J.K. 2018. Scots pine provenance afect the emission rate and chemical composition of volatile organic compounds of forest foor. Canadian Journal of Forest Research, 48: 1373–1381. https://doi.org/10.1139/cjfr-2018-0049
  54. Kivimäenpää M., Magsarjav N., Ghimire R., Markkanen J., Heijari J., Vuorinen M., Holopainen J.K. 2012. Infuence of tree provenance on biogenic VOC emissions of Scots pine (Pinus sylvestris) stumps. Atmospheric Environment, 60: 477–485. http://dx.doi.org/10.1016/j.atmosenv.2012.07.018
  55. Kroll J.H., Seinfeld J.H. 2008. Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmospheric Environment, 42: 3593–3624. https://doi.org/10.1016/j.atmosenv.2008.01.003
  56. Kulmala M., Nieminen T., Chellapermal R., Makkonen R., Bäck J., Kerminen V. 2013. Climate feedbacks linking the increasing atmospheric CO2 concentration, BVOC emissions, aerosols and clouds in forest ecosystems. In: Niinemets U., Monson R.K. (eds). Biology, controls and models of tree volatile organic compound emissions. Dordrecht, Netherlands: Springer, pp. 489–508. http://dx.doi.org/10.1007/978-94-007-6606-8_17
  57. Kwak S.-Y., Wong M.H., Lew T.T. S., Bisker G., Lee M.A., Kaplan A., Dong J., Liu A.T., Koman V,B., Sinclair R., Hamann C., Strano M.S. 2017. Nanosensor technology applied to living plant systems. Annual Review of Analytical Chemistry. Annual Reviews, 10: 113–140. https://doi.org/10.1146/annurev-anchem-061516-045310
  58. Laothawornkitkul J., Taylor J.E., Paul N.D., Hewitt C.N. 2009. Biogenic volatile organic compounds in the Earth system. New Phytologist, 183: 27–51. https://doi.org/10.1111/j.1469-8137.2009.02859.x
  59. Lee A.K.Y., Abbatt J.P.D., Leaitch W.R., Li S., Sjostedt S.J., Wentzell J.J.B., Liggio J., Macdonald A.M. 2016. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry. Atmospheric Chemistry and Physics, 16: 6721–6733. https://doi.org/10.5194/acp-16-6721-2016
  60. Lin C., Owen S.M., Penuelas J. 2007. Volatile organic compounds in the roots and rhizosphere of Pinus spp. Soil Biology and Biochemistry, 39: 951–960. http://localhost/var/www/apps/conversion/tmp/scratch_1/dx.doi.org/10.1016/j.soilbio.2006.11.007
  61. Lin W., Zhao Z., Lai J.M., Liu Y.F., Huang X.R., Yi Z.G. 2019. Effects of temperature and light on isoprene and monoterpene emission from Loropetalum chinense and Nandina domestica. Acta Scientiae Circumstantiae [Huanjing Kexue Xuebao], 39: 3126–3133. http://dx.doi.org/10.1016/j.apr.2022.101397
  62. Litvak M.E., Monson R.K. 1998. Patterns of induced and constitutive monoterpene defenses in conifer needles in relation to herbivory patterns. Oecologia, 114(4): 531–540. https://doi.org/10.1007/s004420050477
  63. Litvinova L.I. 1982. Rol letuchikh fitontsidov rasteniy v ochishchenii atmosfernogo vozdukha ot nekotorykh toksichnykh vybrosov predpriyatiy i avtotransporta. Gigiena i sanitariya, 4: 13–16.
  64. Loreto F., Schnitzler J.P. 2010. Abiotic stresses and induced BVOCs. Trends in Plant Science, 15: 154–166. https://doi.org/10.1016/j.tplants.2009.12.006
  65. Loreto F., Bagnoli F., Fineschi S. 2009. One species, many terpenes: matching chemical and biological diversity. Trends in Plant Science, 14: 416–420. https://doi.org/10.1016/j.tplants.2009.06.003
  66. Loreto F., Barta C., Brilli F., Nogues I. 2006. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant, Cell & Environment, 29(9): 1820–18285. https://doi.org/10.1111/j.1365-3040.2006.01561.x
  67. Loreto F., Ciccioli P., Brancaleoni E., Cecinato A., Frattoni M., Sharkey T.D. 1996. Different sources of acetyl CoA contribute to form three classes of terpenoid emitted by Quercus ilex L. leaves. Proceedings of the National Academy of Sciences (USA), 93: 9966–996981.
  68. Maffei M.E. 2010. Sites of synthesis, biochemistry and functional role of plant volatiles. South African Journal of Botany, 76: 612–631. https://doi.org/10.1016/j.sajb.2010.03.003
  69. Maja M.M., Kasurinen A., Holopainen T., Kontunen-Soppela S., Oksanen E., Holopainen J.K. 2015. Volatile organic compounds emitted from silver birch of diferent provenances across a latitudinal gradient in Finland. Tree Physiology, 35: 975–986. https://doi.org/10.1093/treephys/tpv052
  70. Maja M.M., Kasurinen A., Yli-Pirilä P., Joutsensaari J., Klemola T., Holopainen T., Holopainen J.K. 2014. Contrasting responses of silver birch VOC emissions to short- and long-term herbivory. Tree Physiology, 34(3): 241–252. https://doi.org/10.1093/treephys/tpt127
  71. Martin D., Bohlmann J., Gershenzon J., Francke W., Seybold S. 2003. A novel sex-specific and inducible monoterpene synthase activity associated with a pine bark beetle, the pine engraver, Ips pini. Naturwissenschaften, 90: 173–179. https://doi.org/10.1007/s00114-003-0410-y
  72. Messina P., Lathiere J., Sindelarova K., Vuichard N., Granier C., Ghattas J., Cozic A., Hauglustaine D.A. 2016. Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters. Atmospheric Chemistry and Physics, 16: 14169–14202. https://doi.org/10.5194/acp-16-14169-2016
  73. Misztal P.K., Hewitt C.N., Wildt J., Blande J.D., Eller A.S.D., Fares S., Gentner D.R., Gilman J.B., Graus M., Greenberg J., Guenther A.B., Hansel A., Harley P., Huang M., Jardine K., Karl T., Kaser L., Keutsch F.N., Kiendler-Scharr A., Kleist E., Lerner B.M., Li T., Mak J., Nölscher A.C., Schnitzhofer R., Sinha V., Thornton B., Warneke C., Wegener F., Werner C., Williams J., Worton D.R., Yassa N., Goldstein A.H. 2015. Atmospheric benzenoid emissions from plants rival those from fossil fuels. Scientific Reports, 5: 12064. https://doi.org/10.1038/srep12064
  74. Mofikoya A.O., Bui T.N.T., Kivimäenpää M., Holopainen J.K., Himanen S.J., Blande J.D. 2019. Foliar behaviour of biogenic semi-volatiles: potential applications in sustainable pest management. Arthropod-Plant Interactions, 13: 193–212. https://doi.org/10.1007/s11829-019-09676-1
  75. Mutanda I., Saitoh S., Inafuku M., Aoyama H., Takamine T., Satou K., Akutsu M., Teruya K., Tamotsu H., Shimoji M., Sunagawa H., Oku H. 2016. Gene expression analysis of disabled and re-induced isoprene emission by the tropical tree Ficus septica before and after cold ambient temperature exposure. Tree Physiology, 36: 873–882. https://doi.org/10.1093/treephys/tpw032
  76. Naudts K., Chen Y., McGrath M.J., Ryder J., Valade A., Otto J., Luyssaert S. 2016. Europe’s forest management did not mitigate climate warming. Science, 351: 597–600. https://doi.org/10.1126/science.aad7270
  77. Niinemets U., Loreto F., Reichstein M. 2004. Physiological and physico-chemical controls on foliar volatile organic compound emissions. Trends in Plant Science, 9(4): 180–186 https://doi.org/10.1016/j.tplants.2004.02.006
  78. Oderbolz D.C., Aksoyoglu S., Keller J., Barmpadimos I., Steinbrecher R., Skjoth C.A., Plass-Duelmer C., Prevot A.S.H. 2013. A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover. Atmospheric Chemistry and Physics, 13: 1689–1712. https://doi.org/10.5194/acp-13-1689-2013
  79. Papazian S., Khaling E., Bonnet C., Lassueur S., Reymond P., Moritz T., Blande J.D., Albrectsen B.R. 2016. Central metabolic responses to ozone and herbivory afect photosynthesis and stomatal closure. Plant Physiology, 172: 2057–2078. https://doi.org/10.1104%2Fpp.16.01318
  80. Pasqua G., Monacelli B., Manfredini C., Loreto F., Perez G. 2002. The role of isoprenoid accumulation and oxidation in sealing wounded needles of Mediterranean pines. Plant Science. 163(2): 355–359. https://doi.org/10.1016/S0168-9452(02)00139-5
  81. Peñuelas J., Staudt M. 2010. BVOCs and global change. Trends in Plant Science, 15(3): 133–144. https://doi.org/10.1016/j.tplants.2009.12.005
  82. Peñuelas J., Asensio D., Tholl D., Wenke K., Rosenkranz M., Piechulla B., Schnitzler J.P. 2014. Biogenic volatile emissions from the soil. Plant, Cell and Environment, 37: 1866–1891. https://doi.org/10.1111/pce.12340
  83. Pétron G., Harley P., Greenberg J., Guenther A.B. 2001. Seasonal temperature variations influence isoprene emission. Geophysical Research Letters, 28: 1707–1710. https://doi.org/10.1029/2000GL011583
  84. Pinto D.M., Blande J.D., Souza S.R., Nerg A., Holopainen J.K. 2010. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological efects. Journal of Chemical Ecology, 36: 22–34. https://doi.org/10.1007/s10886-009-9732-3
  85. Ponzio C., Gols R., Pieterse C.M.J., Dicke M. 2013. Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Functional Ecology, 27: 587–598. https://doi.org/10.1111/1365-2435.12035
  86. Potosnak M.J., LeStourgeon L., Pallardy S.G., Hosman K.P., Gu L., Karl T., Geron C., Guenther A.B. 2014. Observed and modeled ecosystem isoprene fluxes from an oak-dominated temperate forest and the influence of drought stress. Atmospheric Environment, 84: 314–322. https://doi.org/10.1016/j.scitotenv.2014.02.065
  87. Räisänen T., Ryyppö A., Kellomäki S. 2008. Impact of timber felling on the ambient monoterpene concentration of a Scots pine (Pinus sylvestris L.) forest. Atmospheric Environment, 42: 6759–6766. https://doi.org/10.1016/j.atmosenv.2008.05.035
  88. Rantala P., Aalto J., Taipale R., Ruuskanen T.M., Rinne J. 2015. Annual cycle of volatile organic compound exchange between a boreal pine forest and the atmosphere. Biogeosciences, 12: 5753–5770. https://doi.org/10.5194/bg-12-5753-2015
  89. Rasheed M.U., Kasurinen A., Kivimäenpää M., Ghimire R., Häikiö E., Mpamah P., Holopainen J.K., Holopainen T. 2017. The responses of shoot-root-rhizosphere continuum to simultaneous fertilizer addition, warming, ozone and herbivory in young Scots pine seedlings in a high latitude feld experiment. Soil Biology and Biochemistry, 114: 279–294. https://doi.org/10.1016/j.soilbio.2017.07.024
  90. Rasmann S., Kollner T., Degenhardt J., Hiltpold I., Toepfer S., Kuhlmann U., Gershenzon J., Turlings T. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature, 434: 732–737. https://doi.org/10.1038/nature03451
  91. Robinson E.A., Ryan G.D., Newman J.A. 2012. A meta-analytical review of the efects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist, 194: 321–336. https://doi.org/10.1111/j.1469-8137.2012.04074.x
  92. Ruuskanen T., Kolari P., Back J., Kulmala M., Rinne J., Hakola H., Taipale R., Raivonen M., Altimir N., Hari P. 2005. On-line feld measurements of monoterpene emissions from Scots pine by proton-transfer-reaction mass spectrometry. Boreal Environment Research, 10: 553–567.
  93. Saleh R., Hennigan C.J., McMeeking G.R., Chuang W.K., Robinson E.S., Coe H., Donahue N.M., Robinson A.L. 2013. Absorptivity of brown carbon in fresh and photo-chemically aged biomassburning emissions. Atmospheric Chemistry and Physics, 13: 7683–7693. https://doi.org/10.5194/acp-13-7683-2013
  94. Sallas L., Luomala E.M., Utriainen J., Kainulainen P., Holopainen J.K. 2003. Contrasting efects of elevated carbon dioxide concentration and temperature on Rubisco activity, chlorophyll fuorescence, needle ultrastructure and secondary metabolites in conifer seedlings. Tree Physiology, 23: 97–108. https://doi.org/10.1093/treephys/23.2.97
  95. Sanadze G.A. 2017. Biogenic isoprene emission as expression of dissipativity, a fundamental cell property. Russian Journal of Plant Physiology, 64: 133–140. https://doi.org/10.1134/S102144371702011X
  96. Schade G., Goldstein A. 2003. Increase of monoterpene emissions from a pine plantation as a result of mechanical disturbances. Geophysical Research Letters, 30(7), 1380: 33-1–33-4. https://doi.org/10.1029/2002GL016138
  97. Schade G.W., Custer T.G. 2004. OVOC emissions from agricultural soil in northern Germany during the 2003 European heat wave. Atmospheric Environment, 38: 6105–6114. https://doi.org/10.1016/j.atmosenv.2004.08.017
  98. Schiestl F.P. 2017. Innate receiver bias: its role in the ecology and evolution of plant–animal interactions. Annual Review of Ecology, Evolution, and Systematics, 48: 585–603. http://dx.doi.org/10.1146/annurev-ecolsys-110316-023039
  99. Schnitzler J.-P., Kreuzwieser J., Heizmann U., Rennenberg H., Wisthaler A., Armin Hansel A. 2004. Contribution of different carbon sources to isoprene biosynthesis in poplar leaves. Plant Physiology, 135(1): 152–160. https://doi.org/10.1104/pp.103.037374
  100. Sharkey T.D., Wiberley A.E., Donohue A.R. 2008. Isoprene emission from plants: why and how. Annals of Botany, 101(1): 5–18. https://doi.org/10.1093/aob/mcm240
  101. Sheil D. 2018. Forests, atmospheric water and an uncertain future: the new biology of the global water cycle. Forest Ecosystems, 5: 19. https://doi.org/10.1186/s40663-018-0138-y
  102. Sindelarova K., Granier C., Bouarar I., Guenther A., Tilmes S., Stavrakou T., Müller J.-F, Kuhn U., Stefani P., Knorr W. 2014. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmospheric Chemistry and Physics, 14(17): 9317–9341. https://doi.org/10.5194/acp-14-9317-2014
  103. Steeghs M., Bais H., de Gouw J., Goldan P., Kuster W., Northway M., Fall R., Vivanco J. 2004. Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in arabidopsis. Plant Physiology, 135: 47–58. https://doi.org/10.1104%2Fpp.104.038703
  104. Stephenson N.L., Das A.J., Condit R., Russo S.E., Baker P.J., Beckman N.G., Coomes D.A., Lines E.R., Morris W.K., Rüger N., Alvarez E., Blundo C., Bunyavejchewin S., Chuyong G., Davies S.J., Duque A., Ewango C.N., Flores O., Franklin J.F., Grau H.R., Hao Z., Harmon M.E., Hubbell S.P., Kenfack D., Lin Y., Makana J.-R., Malizia A., Malizia L.R., Pabst R.J., Pongpattananurak N., Su S.H., Sun I.-F., Tan S., Thomas D., Mantgem P. J. van, Wang X., Wiser S.K., Zavala M.A. 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature, 507: 90–93. https://doi.org/10.1038/nature12914
  105. Taggart R.E., Cross A.T. 2009. Global greenhouse to icehouse and back again: The origin and future of the Boreal Forest biome. Global Planet Change, 65: 115–121. https://doi.org/10.1016/j.gloplacha.2008.10.014
  106. Tarvainen V., Hakola H., Rinne J., Hellen H., Haapanala S. 2007. Towards a comprehensive emission inventory of terpenoids from boreal ecosystems. Tellus. Series B: Chemical and Physical Meteorology, 59(3): 526–534. https://doi.org/10.1111/j.1600-0889.2007.00263.x
  107. Terra W.C.; Campos V.P.; Martins S.J., Costa L.S.A.S., Pereira da Silva J., Barros A.F., Lopes L.E., Santos T.C.N., Smant G., Oliveira D.F. 2018. Volatile organic molecules from Fusarium oxysporum strain 21 with nematicidal activity against Meloidogyne incognita. Crop Protection, 106: 125–131. https://doi.org/10.1016/j.cropro.2017.12.022
  108. Tiiva P., Häikiö E., Kasurinen A. 2018. Impact of warming, moderate nitrogen addition and bark herbivory on BVOC emissions and growth of Scots pine (Pinus sylvestris L.) seedlings. Tree Physiology, 38: 1461–1475. https://doi.org/10.1093/treephys/tpy029
  109. Tiiva P., Julkunen-Tiitto R., Haikio E., Kasurinen A. 2019. Belowground responses of Scots pine (Pinus sylvestris L.) seedlings to experimental warming, moderate nitrogen addition and bark herbivory. Canadian Journal of Forest Research, 49: 647–660. https://doi.org/10.1139/cjfr-2018-0099
  110. Tissier A., Morgan J.A., Dudareva N. 2017. Plant volatiles: going ‘in’ but not ‘out’ of trichome cavities. Trends in Plant Science, 22: 930–938. https://doi.org/10.1016/j.tplants.2017.09.001
  111. Unger N. 2014. Human land-use-driven reduction of forest volatiles cools global climate. Nature Climate Change, 4: 907–910. https://doi.org/10.1038/nclimate2347
  112. Van Meeningen Y., Schurgers G., Rinnan R., Holst T. 2016. BVOC emissions from English oak (Quercus robur) and European beech (Fagus sylvatica) along a latitudinal gradient. Biogeosciences, 13: 6067–6080. https://doi.org/10.5194/bg-13-6067-2016
  113. Van Meeningen Y., Schurgers G., Rinnan R., Holst T., 2017. Isoprenoid emission response to changing light conditions of English oak, European beech and Norway spruce. Biogeosciences, 14: 4045–4060. https://doi.org/10.5194/bg-2016-526
  114. Vanhatalo A., Chan T., Aalto J., Korhonen J.F., Kolari P., Holtta T., Nikinmaa E., Back J. 2015. Tree water relations can trigger monoterpene emissions from Scots pine stems during spring recovery. Biogeosciences, 12: 5353–5363. https://doi.org/10.5194/bg-12-5353-2015
  115. Velikova V., Pinelli P., Loreto F. 2005. Consequences of inhibition of isoprene synthesis in Phragmites australis leaves exposed to elevated temperatures. Agriculture, Ecosystems & Environment, 106: 209–217. https://doi.org/10.1016/j.agee.2004.10.009
  116. Virtanen A., Joutsensaari J., Koop T., Kannosto J., Yli-Pirilä P., Leskinen J., Mäkelä J.M., Holopainen J.K., Poschl U., Kulmala M., Worsnop D.R., Laaksonen A. 2010. An amorphous solid state of biogenic secondary organic aerosol particles. Nature, 467: 824–827. https://doi.org/10.1038/nature09455
  117. Wei J., van Loon J.J.A., Gols R., Menzel T.R., Li N., Kang L., Dicke M. 2014. Reciprocal crosstalk between jasmonate and salicylate defence-signalling pathways modulates plant volatile emission and herbivore host-selection behaviour. Journal of Experimental Botany, 65: 3289–3298. https://doi.org/10.1093/jxb/eru181
  118. Went F. 1960. Blue hazes in the atmosphere. Nature, 187: 641–643. https://doi.org/10.1038/187641a0
  119. Wilbon P.A., Chu F., Tang C. 2013. Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromolecular Rapid Communications, 34: 8–37. https://doi.org/10.1002/marc.201200513
  120. Wilkinson M.J., Monson R.K., Trahan N., Lee S., Brown E., Jackson R.B., Polley H.W., Fay P.A., Fall R. 2009. Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Global Change Biology, 15: 1189–1200. http://dx.doi.org/10.1111/j.1365-2486.2008.01803.x
  121. Yassa N., Song W., Lelieveld J., Vanhatalo A., Bäck J., Williams J. 2012. Diel cycles of isoprenoids in the emissions of Norway spruce, four Scots pine chemotypes, and in Boreal forest ambient air during HUMPPA-COPEC-2010. Atmospheric Chemistry and Physics., 12: 7215–7229. https://doi.org/10.5194/acp-12-7215-2012
  122. Zager J.J., Lange B.M. 2018. Assessing flux distribution associated with metabolic specialization of glandular trichomes. Trends in Plant Science, 23(7): 638–647. https://doi.org/10.1016/j.tplants.2018.04.003
  123. Zhao Y., Wingen L.M., Perraud V., Greaves J., Finlayson-Pitts B.J. 2015. Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air. Physical Chemistry Chemical Physics, 17(19): 12500–12514. http://doi.org/10.1039/c5cp01171j
  124. Zhao D.F., Buchholz A., Tillmann R., Kleist E., Wu C., Rubach F., Kiendler-Scharr A., Rudich Y., Wildt J., Mentel T.F. 2017. Environmental conditions regulate the impact of plants on cloud formation. Nature Communications, 8: 14067. https://doi.org/10.1038/ncomms14067
  125. Zulak K.G., Bohlmann J. 2010. Terpenoid biosynthesis and specialized vascular cells of conifer defense. Journal of Integrative Plant Biology, 52: 86–97. https://doi.org/10.1111/j.1744-7909.2010.00910.x