ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 9 of 9
Up
Ukr. Bot. J. 2019, 76(5): 458–468
https://doi.org/10.15407/ukrbotj76.05.458
Plant Physiology, Biochemistry, Cell and Molecular Biology

Intensity of lipid peroxidation processes and state of tree plantations under heavy metal pollution

Zubrovska O.M., Gryshko V.M.
Abstract

The processes of lipid peroxidation induced by heavy metals in leaves of woody species under the influence of an industrial enterprise were studied. In the assimilation organs of Populus italica, a high accumulation of most compounds of heavy metals was found (intratissue contamination was over five-fold higher than in the control), with zinc as the most abundant metal. Aesculus hippocastanum in the zone of severe pollution most actively accumulated nickel, while Betula pendula accumulated cadmium. At early stages of leaves development, high rates of intratissue contamination were observed for all species. In the leaves of P. italica, during their morphogenesis, the level of secondary peroxidation products (TBA-active compounds) was lowest among the studied species and did not exceed the control values by more than 1.8 times. This is apparently due to increased intensity of functioning of antioxidant enzyme systems, such as glutathione and ascorbic (Halliwell-Asada cycle), and high phytochelatin and metallothionein biosynthesis in leaves, which stipulate its highest physiological stability to altered environment. Instead, in the leaves of A. hippocastanum and B. pendula with low levels of accumulation of most heavy metals, the content of TBA-active products increased 2.7 and 2.9 times, respectively, comparing to the control. It has been shown that plantations of P. italica in industrial conditions were relatively stable with a total score of assimilation organs, branches and trunk damage up to 1.3, while in A. hippocastanum and B. pendula a longterm effect of pollutants at monitoring sites resulted in 25–40% of leaves damaged by necroses and chloroses. Skeletal branches of both species were affected by rot, crown rarity reached more than 40%, and frost cracks 20–25% larger than in the control occurred. Aesculus hippocastanum and B. pendula are characterized by an unstable qualitative state of 30–60% of individuals which are at various stages of dying or significantly depressed.

Keywords: Aesculus hippocastanum, Betula pendula, chloroses, functional state, necroses, Populus italica, TBA-active compounds

Full text: PDF (Ukr) 1.96M

References
  1. Bashmakov D.I., Lukatkin A.S. 2009. Ekologo-fiziologicheskie aspekty akkumulyatsii i raspredeleniya tyazhelykh metallov u vysshikh rasteniy. Ed. A.S. Lukatkin. Saransk: Izd-vo Mordovskogo un-ta, 236 pp.
  2. Batsmanova L., Taran N., Okanenko A., Kosyan A. 2014. Oxidation stress is adaptative reaction inductor of winter wheat varieties. Agriculture (Polnohospodarstvo), 60(2): 70–76. https://doi.org/10.2478/agri-2014-0008
  3. Chipilyak T.F., Gryshko V.M. 2014. Ukrainian Botanical Journal, 71(5): 614–619. https://doi.org/10.15407/ukrbotj71.05.614
  4. Clemens S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88: 1707–1719. https://doi.org/10.1016/j.biochi.2006.07.003
  5. Danilchuk O.V., Gryshko V.M. 2003. Bulletin Taras Shevchenko National University of Kyiv. Introduction and conservation of plant diversity, 6: 42–43.
  6. Danilchuk O.V., Gryshko V.N. 2012. Agrobiologia, 8(94): 57–60.
  7. Dospekhov B.A. 1985. Metodika polevogo opyta (s osnovami statisticheskoy obrabotki rezultatov issledovaniy). Moscow: Agropromizdat, 351 pp.
  8. Emamverdian A., Ding Yu., Mokhberdoran F., Xie Yi. 2015. Heavy Metal Stress and Some Mechanisms of Plant Defense Response. Hindawi Publishing Corporation The Scientific World Journal. Article ID 756120, 18 pp. https://doi.org/10.1155/2015/756120
  9. Erofeeva E.A., Naumova M.M. 2010. Vestnik of Lobachevsky State University of Nizhni Novgorod. Series Biologiya, 1: 140–143.
  10. Fathi A., Barari Tari D. 2016. Effect of Drought Stress and its Mechanism in Plants. International Journal of Life Sciences, 10(1): 1–6. https://doi.org/10.3126/ijls.v10i1.14509
  11. Foyer C.H., Shigeoka S. 2011. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155: 93–100. https://doi.org/10.1104/pp.110.166181
  12. Geraskin S., Evseeva T., Oudalova A. 2011. Plants as a tool for the environmental health assessment. Encyclopedia of Environmental Health. Elsevier Science, 1: 571–579. https://doi.org/10.1016/B978-0-444-52272-6.00612-7
  13. Gill S.S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12): 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
  14. Giniyatullin R.Kh. 2007. Forestry Bulletin, 1: 53–56
  15. Giniyatullin R.Kh., Kulagin A.Yu. 2009. News of the Samara Science Centre of the Russian Academy of Sciences (Izvestiya Samarskogo Nauchnogo Tsentra RAN), 11(1): 223–227.
  16. Gladkov E.A. 2007. Ecology, 1: 71–74.
  17. Greenberg Ch.S., Gaddock Rh.R. 1982. Rapid single step membrane proteine assay. Clininical Chemistry, 28(7): 1726–1728.
  18. Gryshko V.N., Plyuto K.B., Stolyarenkova Z.N. 2002. In: Rol botanichnykh sadiv v zelenomu budivnytstvi mist, kurortnykh ta rekreatsiynykh zon: materialy mizhnarodnoyi konferentsii, part 1, Odesa, pp. 126–131.
  19. Gryshko V.M., Syshchykov D.V., Piskova O.M., Danylchuk O.V., Mashtaler N.V. 2012. Vazhki metaly: nadkhodzhennya v grunty, translokatsiya u roslynakh ta ekolohichna nebezpeka. Donetsk: Donbas, 303 pp.
  20. Guillermo S.-M.E., Cogliatti D.H. 1998. The regulation of zinc uptake in wheat plants. Plant Science, 137(6): 1–12. https://doi.org/10.1016/S0168-9452(98)00112-5
  21. Hamanova O.M. 2013. Plant protection and quarantine (Zakhyst i karantyn roslyn), 59: 45–52.
  22. Hlukhov O.Z., Safonov A.I., Khyzhnyak N.A. 2006. Fitoindykatsiya metalopresynhu v antropohenno transformovanomu seredovyshchi. Donetsk: Nord-Press, 360 pp.
  23. Horvath G., Droppa M., Horvath L.J., Szalontai B. 1995. Effects of heavy metal induced stress on the photosynthetic membrane characteristics. Acta Phytopathologica et Entomologica Hungarica, 30(1–2): 127–129.
  24. Ilkun G.M. 1978. Zagryazniteli atmosfery i rasteniya. Kiev: Naukova Dumka, 247 pp.
  25. Ilin V.B., Stepanova M.D. 1979. Soil Science (Pochvovedenie), 11: 61–67.
  26. Instruktsiya z inventaryzatsiyi zelenykh nasadzhen’ u naselenykh punktakh Ukrayiny. 2007–onward. Available at: https://zakon.rada.gov.ua/laws/show/z0182-02
  27. Kamyshnikov V.S. 2000. Spravochnik po kliniko-biokhimicheskoy laboratornoy diagnostike, vol. 2. Minsk: Belarus, 207 pp.
  28. Khromykh N.O., Rossykhina-Halycha H.S., Lykholat Yu.V. 2013. Scientific journal of the National Pedagogical University named after M.P. Drahomanov. Series 20. Biology (Naukovyy chasopys Natsional'noho pedahohichnoho universytetu imeni M.P. Drahomanova. Seriya 20. Biolohiya), 5: 81–88.
  29. Kopylova L.V. 2012. Heavy metals accumulation in tree plants in urban area of Eastern Trans-Baikal: Cand. Sci. Diss. Abstract. Ulan-Ude, Buryat State University, 23 pp.
  30. Koshkin E.I., Vagun I.V., Volovik V.T. 2012. News of the Timiryazev Agricultural Academy (Isvestiya TSKhA), 2: 32–42.
  31. Kraemer U., Pickering I.J., Prince R.C., Raskin I., Salt D.E. 2000. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiology, 122(4): 1343–1353. https://doi.org/10.1104/pp.122.4.1343
  32. Lukina Yu.M., Vasilevskaya N.V. 2012. Plant resources (Rastytelnye resursy), 48(1): 51–58.
  33. Metodika fenologicheskikh nablyudeniy v botanicheskikh sadakh SSSR. 1975. Moscow: GBS AN SSSR, 27 pp.
  34. Metodicheskie ukazaniya po opredeleniyu tyazhelykh metallov v pochvakh selkhozugodiy i produktsii rastenievodstva. 1989. Moscow, 62 pp.
  35. Movsesyan L.I., Kosoglazov A.A., Oleynikov G.F. 1978. Otsenka ustoychivosti drevesno-kustarnikovykh porod v gorodskikh nasazhdeniyakh k boleznyam i vreditelyam. In: Novye priemy ozeleneniya gorodov, issue 156. Moscow: Akademiya Kommunalnogo khozyaistva, pp. 43–47.
  36. Oszmianski J., Kalisz S., Aneta W. 2014. The content of phenolic compounds in leaf tissues of White ( Aesculus hippocastanum L.) and Red Horse Chestnut ( Aesculus carea H.) colonized by the Horse Chestnut Leaf Miner (Cameraria ohridella Deschka & Dimić). Molecules, 19: 14625–14636. https://doi.org/10.3390/molecules190914625
  37. Ramazanova Z.R. 2012. Adaptive structural and functional features of shoots of woody plants in the conditions of the city of Makhachkala: Cand. Sci. Diss. Abstract. Makhachkala, Dagestan State University, 26 pp.
  38. Ryazanova M.Ye., Batsmanova L.M., Kovalenko M.S., Mykhals'ka L.M., Shvartau V.V. 2015. Plant Physiology and Genetics, 47(6): 497–504.
  39. Sima Gh., Fatemeh Z. 2013. Histological and ultrastructure changes in Medicago sativa in response to lead stress. Journal of Pharmacognosy and Phytochemistry, 2(2): 20–29.
  40. Todeschini V., Lingua G., D'Agostino G., Carniato F., Roccotiello E., Berta G. 2011. Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Environmental and Experimental Botany, 71(1): 50–56. https://doi.org/10.1016/j.envexpbot.2010.10.018
  41. Vetchinnikova L.V., Kuznetsova T.Yu., Titov A.F. 2013. Transactions of Karelian Research Centre of Russian Academy of Science (Trudy Karelskogo nauchnogo tsentra RAN), 3: 68–73.
  42. Yang Z., Chu C. 2011. Towards in understanding plant response to heavy metal stress. In: Abiotic Stress in Plants – Mechanisms and Adaptations. Shanghai: InTech, pp. 59–78. https://doi.org/10.5772/24204
  43. Zubrovska O.M., Gryshko V.M. 2016. Studia Biologica, 10(3–4): 47–60. https://doi.org/10.30970/sbi.1003.499
  44. Zubrovska O.M., Gryshko V.M. 2017. Plant Physiology and Genetics, 49(5): 444–451.