ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 8 of 9
Up
Ukr. Bot. J. 2019, 76(5): 451–457
https://doi.org/10.15407/ukrbotj76.05.451
Plant Physiology, Biochemistry, Cell and Molecular Biology

Degree of genetic differentiation of the local populations of Schizophyllum commune (Agaricales, Basidiomycota) in the southern part of Kyiv

Boiko S.M.
Abstract

Establishing genetic diversity of fungi is a fundamental issue related to the development of their conservation strategies. The data on genetic differentiation of the local populations of Schizophyllum commune in the southern part of Kyiv using polymorphic intracellular enzyme systems are provided. In total, fifteen allozymes were identified in three experimental populations of the fungus for four enzyme systems. It was demonstrated that heterozygote deficiency exists for most of the studied loci at the population level (Fis = 0.390). The results show a high flow of genes between experimental populations (Nm = 7.12) and a significant contribution of the Amy2 locus to this index. A relationship between the genetic component and geographic coordinates of the samples was not established. Low level of genetic differentiation provides evidence in favor of fungal dispersal mostly by the spore mass. Thus the studied local populations belong to a single natural population.

Keywords: genetic diversity, loci, Schizophyllum commune, spatial structure

Full text: PDF (Ukr) 1.53M

References
  1. Boiko S.M. 2015a. Allozyme polymorphism in mono- and dikaryotic cultures of fungus Schizophyllum commune Fr. (Basidiomycetes). Cytology and Genetics, 49(1): 27–31. https://doi.org/10.3103/S009545271501003X
  2. Boiko S.M. 2015b. Ukrainian Botanical Journal, 72(3): 252–256. https://doi.org/10.15407/ukrbotj72.03.252
  3. Boiko S.M. 2018. Ukrainian Botanical Journal, 75(2): 191–196. https://doi.org/10.15407/ukrbotj75.02.191
  4. Dam N. 2013. Spores do travel. Mycologia, 105: 1618–1622. https://doi.org/10.3852/13-035
  5. Hibbett D.S., Fukumasa-Nakai Y., Tsuneda A., Donoghue M.J. 1995. Phylogenetic diversity in shiitake inferred from nuclear ribosomal DNA sequences. Mycologia, 87: 618–638. https://doi.org/10.2307/3760806
  6. James T.Y., Porter D., Hamrick J.L., Vilgalys R. 1999. Evidence for limited intercontinental gene flow in the cosmopolitan mushroom Schizophyllum commune. Evolution, 53(6): 1665–1677. https://doi.org/10.1111/j.1558-5646.1999.tb04552.x
  7. Kauserud H., Schumacher T. 2003. Regional and local population structure of the pioneer wood-decay fungus Trichaptum abietinum. Mycologia, 95(3): 416–425. https://doi.org/10.1080/15572536.2004.11833086
  8. Layne E. 1957. Spectrophotometric and turbidimetric methods for measuring proteins. Methods in Enzymology, 3: 447–455. https://doi.org/10.1016/S0076-6879(57)03413-8
  9. Manchenko G.P. 2003. Handbook of detection of enzymes on electrophoretic gels. Boca Raton, Fl: CRC Press, 553 pp. https://doi.org/10.1201/9781420040531
  10. Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research, 27: 209–220.
  11. Mishra A.K., Sharma K., Misra R.S. 2010. Isozyme and PCR-based genotyping of epidemic Phytophthora colocasiae associated with taro leaf blight. Archives of Phytopathology and Plant Protection, 43(14): 1367–1380. https://doi.org/10.1080/03235400802476450
  12. Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583–590.
  13. Ohm R.A., de Jong J.F., Lugones L.G., Aerts A., Kothe E., Stajich J.E., de Vries R.P., Record E., Levasseur A., Baker S.E., Bartholomew K.A., Coutinho P.M., Erdmann S., Fowler T.J., Gathman A.C., Lombard V., Henrissat B., Knabe N., Kües U., Lilly W.W., Lindquist E., Lucas S., Magnuson J.K., Piumi F., Raudaskoski M., Salamov A., Schmutz J., Schwarze F.W., van Kuyk P.A., Horton J.S., Grigoriev I.V., Wösten H.A. 2010. Genome sequence of the model mushroom Schizophyllum commune. Nature Biotechnology, 28(9): 957–963. https://doi.org/10.1038/nbt.1643
  14. Peakall R., Smouse P.E. 2006. GenAIEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6: 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  15. Raper C.A. 1988. Schizophyllum commune, a model for genetic studies of the Basidiomycotina. In: Genetics of Plant Pathogenic Fungi. Ed. G.S. Sidhu. London: Acad. Press, pp. 511–522. https://doi.org/10.1016/B978-0-12-033706-4.50038-4
  16. Urbanelli S., Della Rosa V., Fanelli C., Fabbri A.A., Reverberi M. 2003. Genetic diversity and population structure of the Italian fungi belonging to the taxa Pleurotus eryngii (DC.:Fr.) Quèl and P. ferulae (DC.:Fr.) Quèl. Heredity. 90(3): 253–259. https://doi.org/10.1038/sj.hdy.6800239
  17. Xu J. 2006. Fundamentals of fungal molecular population genetic analyses. Current issues in molecular biology, 8(2): 75–89.
  18. Yeh F.C., Yang R., Boyle T.J., Ye Z., Xiyan J.M. 2000. POPGENE 32, Microsoft Window-based freeware for population genetic analysis, Version 1.32. Edmonton, Canada: Molecular Biology and Biotechnology Centre, University of Alberta. Available at: https://sites.ualberta.ca/~fyeh/popgene.html
  19. Zuur A.F., Leno E.N., Smith G.M. 2007. Analysing Ecological Data. New York: Springer, 672 pp. https://doi.org/10.1007/978-0-387-45972-1