ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 9 of 9
Up
Ukr. Bot. J. 2019, 76(1): 71–78
https://doi.org/10.15407/ukrbotj76.01.071
Plant Physiology, Biochemistry, Cell and Molecular Biology

Effect of microelements on cytokinins content in mycelial biomass of medicinal mushroom Trametes versicolor (Polyporaceae, Basidiomycota)

Al-Maali G.A., Vedenicheva N.P., Bisko N.A., Kosakivska I.V.
Abstract

The study results of the effects of Zinc, Manganese and Copper sulfates and citrates on cytokinins content in mycelial biomass of the valuable medicinal mushroom Trametes versicolor, strain 353 from the IBK Mushroom Culture Collection of the M.G. Kholodny Institute of Botany, in culture are presented. Cytokinins were measured using high performance liquid chromatography on an Agilent 1200 LC chromatograph with a G 1315 B diode matrix detector. The addition of salts of these metals was shown to accelerate the mycelium growth. The most effective was Copper citrate, its introduction to the nutrient medium caused the biomass growth increase by almost 80%. In general, citrates affected the growth of T. versicolor 353 more effectively than sulfates. Metal compounds stimulated formation of active forms of hormones (trans-zeatin and zeatin riboside) and reduced the content of inactive forms (cis-zeatin and zeatin-O-glucoside). The most significant effect on cytokinins metabolism was produced by Zinc salts, under its effect the levels of trans-zeatin and zeatin riboside increased eightfold. Sulfates of the metals influenced synthesis of zeatin riboside more effectively than citrates. All studied salts reduced the level of cis-zeatin at least twice. Minor quantities of zeatin-O-glucoside detected in the control were not discovered in experiments with metals. Although the effect of the studied microelements on acceleration of the growth of mycelial biomass was generally accompanied by an increase in the content of active forms of cytokinins, quantitative dependencies between these two indices were not recorded.

Keywords: Copper, cytokinins, Manganese, microelements, Trametes versicolor, Zinc

Full text: PDF (Ukr) 740K

References
  1. Al-Maali G.A. 2015. Ukrainian Botanical Journal, 72(4): 393–397. https://doi.org/10.15407/ukrbotj72.04.393
  2. Al-Maali G.A. 2016. The effect of citrate and sulfate of different metals on the biomass composition of medicinal mushroom Trametes versicolor (L.) Lloyd. Chornomorski botanical journal, 12(1): 64–71. https://doi.org/10.14255/2308-9628/16.121/6
  3. Banci L., Bertini I. 2013. Metallomics and the cell. In: Metal Ions in Life Sciences 12. Ed. L. Banci. Dordrecht, The Netherlands: Springer, pp. 1–13. https://doi.org/10.1007/978-94-007-5561-1_1 https://www.ncbi.nlm.nih.gov/pubmed/23595668
  4. Bid egain M.A., Cubitto M.A., Curvetto N.R. 2015. Optimization of the yield of lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Higher Basidiomycetes), cultivated on a sunflower seed hull substrate produced in Argentina: effect of olive oil and copper. International Journal of Medicinal Mushrooms, 17(11): 1095–1105. https://doi.org/10.1615/IntJMedMushrooms.v17.i11.100
  5. Bisko N.A., Lomberg M.L., Mytropolska N.Yu., Mykchaylova O.B. 2016. IBK Mushroom culture collection. Kyiv: Alterpress, 120 pp.
  6. Broadley M.R., White P.J., Hammond J.P., Zelko I., Lux A. 2007. Zinc in plants. New Phytologist, 173(4): 677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x https://www.ncbi.nlm.nih.gov/pubmed/17286818
  7. Chanclud E, Morel J.-B. 2016. Plant hormones: a fungal point of view. Molecular Plant Pathology, 17(8): 1289–1297. https://doi.org/10.1111/mpp.12393 https://www.ncbi.nlm.nih.gov/pubmed/26950404
  8. Chatterjee S., Chatterjee B.P., Guha A.K. 2008. Enhancement of growth and chitosan production by Rhizopus oryzae in whey medium by plant growth hormones. International Journal of Biological Macromolecules, 42(2): 120–126. https://doi.org/10.1016/j.ijbiomac.2007.10.006 https://www.ncbi.nlm.nih.gov/pubmed/18023862
  9. Gajdosová S., Spičhal L., Kaminek M., Hoverová K., Novák O.,Dobrev P.I., Galuszka P., Klima P., Gaudinová A., Zizková E., Hanus J., Dancák M., Trávnicek B., Pesek B., Krupicka M., Vanková R., Strnad M., Motyka V. 2011. Distribution, biological activities, metabolism and the conceivable function of cis-zeatin-type cytokinins in plants. Journal of Experimental Botany, 62: 2827–2840. https://doi.org/10.1093/jxb/erq457 https://www.ncbi.nlm.nih.gov/pubmed/21282330
  10. Grant M.R., Jones J.D. 2009. Hormone (dis)harmony moulds plant health and disease. Science, 324: 750–752. https://doi.org/10.1126/science.1173771 https://www.ncbi.nlm.nih.gov/pubmed/19423816
  11. Guha A.K., Banerjee A.B. 1974. Effect of indole-3-acetic acid and kinetin on submerged growth of Agaricus campestris. Acta microbiologica Polonica, 6(3): 133–134.
  12. Kaim W., Schwederski B., Klein A. 2013. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life. An Introduction and Guide. John Wiley & Sons, 456 pp.
  13. Kiba T., Kudo T., Kojima M., Sakakibara H. 2011. Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. Journal of Experimental Botany, 62(4): 1399–1409. https://doi.org/10.1093/jxb/erq410 https://www.ncbi.nlm.nih.gov/pubmed/21196475
  14. Kieber J.J., Schaller G.E. 2014. Cytokinins. The Arabidopsis Book, 11: e0168. https://doi.org/10.1199/tab.0168 https://www.ncbi.nlm.nih.gov/pubmed/24465173 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894907
  15. Kosinov M.V., Kaplunenko V.G. 2009. Sposib otrymannya karboksylativ kharchovykh kyslot z vykorystannyam nanotekhnologij. Patent UA, no 39392, publ. 25.02.2009, 200 pp.
  16. Kovač M., Žel J. 1995. The effect of aluminum on cytokinins in the mycelia of Amanita muscaria. Journal of Plant Growth Regulation, 14: 117–120. https://doi.org/10.1007/BF00210912
  17. Krakowska A., Reczyński W., Muszyńska B. 2016. Optimization of the liquid culture medium composition to obtain the mycelium of Agaricus bisporus rich in essential minerals. Biological Trace Element Research, 173(1): 231–240. https://doi.org/10.1007/s12011-016-0638-y https://www.ncbi.nlm.nih.gov/pubmed/26857993
  18. Law N., Caudle M., Pecoraro V. 1998. Manganese redox enzymes and model systems: properties, structures and reactivity. Advances in Inorganic Chemistry, 46(7): 305–440. https://doi.org/10.1016/S0898-8838(08)60152-X
  19. Liu Q., Liu H., Chen C., Wang J., Han Y., Long Z. 2017. Effects of element complexes containing Fe, Zn and Mn on artificial morel's biological characteristics and soil bacterial community structures. PLoS ONE, 12(3): e0174618. https://doi.org/10.1371/journal.pone.0174618 https://www.ncbi.nlm.nih.gov/pubmed/28350840 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5370159
  20. Malinowska E., Krzyczkowski W., Łapienis G., Herold F. 2009. Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: optimization using a central composite rotatable design (CCRD). Journal of Industrial Microbiology & Biotechnology, 36(12): 1513–1527. https://doi.org/10.1007/s10295-009-0640-x https://www.ncbi.nlm.nih.gov/pubmed/19784853
  21. Mason M.G., Jha D., Salt D.E., Tester M., Hill K., Kiebes J.J., Schaller G.E. 2010. Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1; 1 and accumulation of sodium in Arabidopsis shoots. Plant Journal, 64: 753–763. https://doi.org/10.1111/j.1365-313X.2010.04366.x https://www.ncbi.nlm.nih.gov/pubmed/21105923
  22. Mok D.W.S., Mok M.C. 2001. Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology, 52: 89–118. https://doi.org/10.1146/annurev.arplant.52.1.89 https://www.ncbi.nlm.nih.gov/pubmed/11337393
  23. Morrison E.N., Knowles S., Hayward A., Thorn R.G., Saville B.J., Emery R.J. 2015. Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis. Mycologia, 107(2): 245–257. https://doi.org/10.3852/14-157 https://www.ncbi.nlm.nih.gov/pubmed/25572099
  24. Mukhopadhyay R., Chatterjee S., Chatterjee B.P., Guha A.K. 2005. Enhancement of biomass production of edible mushroom Pleurotus sajor-caju grown in whey by plant growth hormones. Process Biochemistry, 40(3–4): 1241–1244. https://doi.org/10.1016/j.procbio.2004.05.006
  25. Nam Y.J., Tran L.S., Kojima M., Sakakibara H., Nishiyama R. 2012. Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis. LoS One, 7(10): e47797. https://doi.org/10.1371/journal.pone.0047797 https://www.ncbi.nlm.nih.gov/pubmed/23112848 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480408
  26. Ohkama N., Takei K., Sakakibara H., Hayashi H., Yoneyama T., Fujiwara T. 2002. Regulation of sulfur-responsive gene expression by exogenously applied cytokinins in Arabidopsis thaliana. Plant Cell Physiology, 43: 1493–1501. https://doi.org/10.1093/pcp/pcf183 https://www.ncbi.nlm.nih.gov/pubmed/12514246
  27. Ramachela K., Sihlangu S.M., Moral M.T. 2016. Effect of various hormonal treated plant substrates on development and yield of Pleurotus ostreatus. Cogent Food & Agriculture, 2(1): 1276510. https://doi.org/10.1080/23311932.2016.1276510
  28. Ramireddy E., Hosseimi S.A., Eggert K., Gillandt S., Gnad H., Von Wirén N., Schmulling T. 2018. Root engineering in barley: increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance. Plant Physiology, 177(3): 1078–1095. https://doi.org/10.1104/pp.18.00199 https://www.ncbi.nlm.nih.gov/pubmed/29871980 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052998
  29. Romanov G.A. 2009. How do cytokinins affect the cell? Russian Journal of Plant Physiology, 56(2): 268–290. https://doi.org/10.1134/S1021443709020174
  30. Safaei Z., Karimi K., Golkar P., Zamani A. 2015. Effects of plant hormones on Mucor indicus growth and chitosan and ethanol production. International Journal of Molecular Sciences, 16(7): 16683–16694. https://doi.org/10.3390/ijms160716683 https://www.ncbi.nlm.nih.gov/pubmed/26204839 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519973
  31. Séguéla M., Briat J.F., Vert G., Curie C. 2008. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. Plant Journal, 55: 289–300. https://doi.org/10.1111/j.1365-313X.2008.03502.x https://www.ncbi.nlm.nih.gov/pubmed/18397377
  32. Staats C.C., Kmetzsch L., Schrank A., Vainstein M.H. 2015. Fungal zinc metabolism and its connections to virulence. Frontiers in Cellular and Infection Microbiology, 3: 65. https://doi.org/10.3389/fcimb.2013.00065 https://www.ncbi.nlm.nih.gov/pubmed/24133658 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796257
  33. Vedenicheva N.P., Al-Maali G.A., Mytropolska N.Yu., Mykhaylova O.B., Bisko N.A., Kosakivska I.V. 2016. Endogenous cytokinins in medicinal basidiomycetes mycelial biomass. Biotechnologia Acta, 9(1): 55–63. https://doi.org/10.15407/biotech9.01.055
  34. Vedenicheva N.P., Kosakivska I.V. 2017. Cytokinins as regulators of plant ontogenesis under different growth conditions. Kyiv: Nash Format, 200 pp.
  35. Vedenicheva N.P., Al-Maali G.A., Mykchaylova O.B., Lomberg M.M., Bisko N.A., Shcherbatiuk M.M., Kosakivska I.V. 2018a. Endogenous cytokinins dynamics in mycelial biomass basidiomycetes at different stages of cultivation. International Journal of Biochemistry & Physiology, 3(2): 000122. https://medwinpublishers.com/IJBP/IJBP16000122.pdf https://doi.org/10.23880/IJBP-16000122
  36. Vedenicheva N.P., Al-Maali G.A., Bisko N.A., Shcherbatiuk M.M., Lomberg M.M., Mytropolska N.Yu., Mykchaylova O.B., Kosakivska I.V. 2018b. Comparative analysis of cytokinins in mycelial biomass of medicinal mushrooms. International Journal of Medicinal Mushrooms, 20(9): 837–847. https://doi.org/10.1615/IntJMedMushrooms.2018027797 https://www.ncbi.nlm.nih.gov/pubmed/30317978
  37. Yonekura-Sakakibara K., Kojima M., Yamaya T., Sakakibara H. 2004. Molecular characterization of cytokininresponsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiology, 134: 1654–1651. https://doi.org/10.1104/pp.103.037176 https://www.ncbi.nlm.nih.gov/pubmed/15064375 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC419839
  38. Záveská Drábková L., Dobrev P.I., Motyka V. 2015. Phytohormone profiling across the Bryophytes. PLoS ONE, 10(5): e0125411. https://doi.org/10.1371/journal.pone.0125411 https://www.ncbi.nlm.nih.gov/pubmed/25974061 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431756