ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 5 of 10
Up
Ukr. Bot. J. 2017, 74(5): 442–448
https://doi.org/10.15407/ukrbotj74.05.442
Fungi and Fungi-like Organisms

Environmental DNA as a tool for ecological monitoring of fungal communities

Pomohaybo V.M., Makarenko Ya.M.
Abstract

An overview of recently published data on fungal communities based on the environmental DNA technology is provided. In most cases, these scarce data result from the wide range biodiversity studies of eukaryotes while detecting species richness of fungi from eDNA is still poorly studied. However, recent eDNA analyses have already revealed numerous undescribed taxa of fungi in various ecosystems. They also demonstrated that eDNA technology may considerably increase the total number of fungal species comparatively with those described so far using traditional methods. Environmental DNA barcoding as an efficient technique for detecting fungal diversity in various ecosystems provides new insights into the evolution of fungi.

Keywords: fungi, environmental DNA, eDNA barcoding, fungal diversity, evolution

Full text: PDF (Ukr) 687K

References
  1. Allentoft M.E., Collins M., Harker D., Haile J., Oskam Ch.L., Hale M.L., Campos P.F., Samaniego J.A., Gilbert M.Th.P., Willerslev E., Zhang G., Scofield R.P., Holdaway R.N., Bunce M. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. R. Soc. B., 2012, 279(1748): 4724–4733. https://doi.org/10.1098/rspb.2012.1745
  2. Amaral-Zettler L.A., Gómez F., Zettler E., Keenan B.G., Amils R., Sogin M.L. Eukaryotic diversity in Spain's river of fire. Nature, 2002, 417(6885): 137. https://doi.org/10.1038/417137a https://www.ncbi.nlm.nih.gov/pubmed/12000949
  3. Arnold A.E., Maynard Z., Gilbert G.S., Coley P.D., Kursar T.A. Are tropical fungal endophytes hyperdiverse? Ecol. Lett., 2000, 3(4): 267–274. https://doi.org/10.1046/j.1461-0248.2000.00159.x
  4. Bass D., Howe A., Brown N., Barton H., Demidova M., Michelle H., Li L., Sanders H., Watkinson S.C., Willcock S., Richards T.A. Yeast forms dominate fungal diversity in the deep oceans. Proc. Biol. Sci., 2007, 274(1629): 3069–3077. https://doi.org/10.1098/rspb.2007.1067
  5. Berney C., Fahrni J., Pawlowski J. How many novel eukaryotic «kingdoms»? Pitfalls and limitations of environmental DNA surveys. BMC Biol., 2004, 2(13): 1–13.
  6. Blum S.A.E., Lorenz M.G. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils. Syst. Appl. Microbiol., 1997, 20(4): 513–521. https://doi.org/10.1016/S0723-2020(97)80021-5
  7. Briggs A.W., Stenzel U., Meyer M., Krause J., Kircher M., Pääbo S. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA, Nucleic Acids Res., 2010, 38(6), e87. https://doi.org/10.1093/nar/gkp1163 https://www.ncbi.nlm.nih.gov/pubmed/20028723 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847228
  8. Buchan A., Newell S.Y., Moreta J.I., Moran M.A. Analysis of internal transcribed spacer regions of rRNA genes in fungal communities in a southeastern U.S. salt marsh. Microbiol. Ecol., 2002, 43(3): 329–340. https://doi.org/10.1007/s00248-001-1062-0 https://www.ncbi.nlm.nih.gov/pubmed/12037611
  9. Burgaud G., Le Calvez T., Arzur D., Vandenkoornhuyse P., Barbier G. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ. Microbiol., 2009, 11(6): 1588–1600. https://doi.org/10.1111/j.1462-2920.2009.01886.x https://www.ncbi.nlm.nih.gov/pubmed/19239486
  10. Damare S., Raghukumar C. Fungi and macroaggregation in deep-sea sediments. Microbiol. Ecol., 2008, 56(1): 168–177. https://doi.org/10.1007/s00248-007-9334-y https://www.ncbi.nlm.nih.gov/pubmed/17994287
  11. Deacon J. Fungal biology. 4 ed., Oxford: Wiley-Blackwell, 2006, vii+372 pp.
  12. Deagle B.E., Eveson J.P., Jarman S.N. Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces. Front. Zool., 2006, 3(11): 1–10.
  13. Dejean T., Valentini A., Duparc A., Pellier-Cuit S., Pompanon F., Taberlet P., Miaud C. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE, 2011, 6(8), e23398. https://doi.org/10.1371/journal.pone.0023398 https://www.ncbi.nlm.nih.gov/pubmed/21858099 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152572
  14. Dover C.L. van, Ward M.E., Scott J.L., Underdown J., Andersen B., Gustafson C., Whalen M., Carnegia R.B. A fungal epizootic in mussels at a deep-sea hydrothermal vent. Mar. Ecol., 2007, 28(1): 54–62. https://doi.org/10.1111/j.1439-0485.2006.00121.x
  15. Epp L.S., Boessenkool S., Bellemain E.P., Haile J., Esposito A., Riaz T., Erséus C., Gusarov V.I., Edwards M.E., Johnsen A., Stenøien H.K., Hassel K., Kauserud H., Yoccoz N.G., Bråthen K.A., Willerslev E., Taberlet P., Coissac E., Brochmann C. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol. Ecol., 2012, 21(8): 1821–1833. https://doi.org/10.1111/j.1365-294X.2012.05537.x https://www.ncbi.nlm.nih.gov/pubmed/22486821
  16. Garibyan L., Avashia N. Polymerase Chain Reaction. J. Investig. Derm., 2013, 133(3), e6: 1–4. https://doi.org/10.1038/jid.2013.1
  17. Gilbert M.Th.P., Djurhuus D., Melchior L., Lynnerup N., Worobey M., Wilson A.S., Andreasen C., Dissing J. mtDNA from hair and nail clarifies the genetic relationship of the 15th century Qilakitsoq Inuit mummies. Amer. J. Phys. Anthropol., 2007, 133(2): 847–853. https://doi.org/10.1002/ajpa.20602 https://www.ncbi.nlm.nih.gov/pubmed/17427925
  18. Haile J., Holdaway R., Oliver K., Bunce M., Gilbert M.Th.P., Nielsen R., Munch K., Ho S.Y.W., Shapiro B., Willerslev E. Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor? Mol. Biol. Evol., 2007, 24(4): 982–989. https://doi.org/10.1093/molbev/msm016 https://www.ncbi.nlm.nih.gov/pubmed/17255121
  19. Hannen E.J. van, Mooij W., van Agterveld M.P., Gons H.J., Laanbroek H.J. Detritus-dependent development of the microbial community in an experimental system: qualitative analysis by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol., 1999, 65(6): 2478–2484. https://www.ncbi.nlm.nih.gov/pubmed/10347030 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC91365
  20. Hawksworth D.L. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol. Res., 1991, 95(6): 641–655. https://doi.org/10.1016/S0953-7562(09)80810-1
  21. Hawksworth D.L. The magnitude of fungal diversity: the 1,5 million species estimate revisited. Mycol. Res., 2001, 105(12): 1422–1432. https://doi.org/10.1017/S0953756201004725
  22. Hebert P.D.N., Cywinska A., Ball Sh.L., Waard J.R. de. Biological identifications through DNA barcodes. Proc. Roy. Soc. B., 2003, 270(1512): 313–321. https://doi.org/10.1098/rspb.2002.2218
  23. Horton T.R., Bruns T.D. The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol. Ecol., 2001, 10(8): 1855–1871. https://doi.org/10.1046/j.0962-1083.2001.01333.x https://www.ncbi.nlm.nih.gov/pubmed/11555231
  24. Jebaraj C.S., Raghukumar C., Behnke A., Stoeck T. Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol. Ecol., 2010, 71(3): 399–412. https://doi.org/10.1111/j.1574-6941.2009.00804.x https://www.ncbi.nlm.nih.gov/pubmed/20002178
  25. Jones M.D.M., Forn I., Gadelha C., Egan M.J., Bass D., Massana R., Richards T.A. Discovery of novel intermediate forms redefines the fungal tree of life. Nature, 2011, 474(7350): 200–203. https://doi.org/10.1038/nature09984 https://www.ncbi.nlm.nih.gov/pubmed/21562490
  26. Kirk P.M., Cannon P.F., Minter D.W., Stalpers J.A. Dictionary of the Fungi. 10th ed., UK: CABI Europe, 2008, xi+748 pp.
  27. Kohlmeyer J., Kohlmeyer E. Marine mycology: the higher fungi, New York: Acad. Press, 1979, xiv+690 pp.
  28. Kolmodin L.A., Birch D.E. Polymerase chain reaction: Basic principles and routine practice. In: Methods in molecular biology. 2 ed. Eds B.-Y. Chen, H.W. Janes, Totowa (NJ): Humana Press Inc., 2002, vol. 192, pp. 3–18. https://doi.org/10.1385/1-59259-177-9:003
  29. Kress W.J., Wurdack K.J., Zimmer E.A., Weigt L.A., Janzen D.H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA, 2005, 102(23): 8369–8374. https://doi.org/10.1073/pnas.0503123102 https://www.ncbi.nlm.nih.gov/pubmed/15928076 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1142120
  30. Lawley B., Ripley S., Bridge P., Convey P. Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl. Environ. Microbiol., 2004, 70(10): 5963–5972. https://doi.org/10.1128/AEM.70.10.5963–5972.2004
  31. Le Calvez T., Burgaud G., Mahé S., Barbier G., Vandenkoornhuyse P. Fungal diversity in deep-sea hydrothermal ecosystems. Appl. Environ. Microbiol., 2009, 75(20): 6415–6421. https://doi.org/10.1128/AEM.00653-09 https://www.ncbi.nlm.nih.gov/pubmed/19633124 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765129
  32. Lefèvre E., Bardot C., Noöl C., Carrias J.F., Viscogliosi E., Amblard C., Sime-Ngando T. Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ. Microbiol., 2007, 9(1): 61–71. https://doi.org/10.1111/j.1462-2920.2006.01111.x https://www.ncbi.nlm.nih.gov/pubmed/17227412
  33. Lefèvre E., Roussel B., Amblard C., Sime-Ngando T. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS ONE, 2008, 3(6), e2324: 1–10. https://doi.org/10.1371/journal.pone.0002324
  34. Lefranc M., Thénot A., Lepère C., Debroas D. Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl. Environ. Microbiol., 2005, 71(10): 5935–5942. https://doi.org/10.1128/AEM.71.10.5935–5942.2005
  35. Lepère C., Boucher D., Jardillier L., Domaizon I., Debroas D. Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin). Appl. Environ. Microbiol., 2006, 72(4): 2971–2981. https://doi.org/10.1128/AEM.72.4.2971–2981.2006
  36. Lesaulnier C., Papamichail D., McCorkle S., Ollivier B., Skiena S., Taghavi S., Zak D., van der Lelie D. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ. Microbiol., 2008, 10(4): 926–941. https://doi.org/10.1111/j.1462-2920.2007.01512.x https://www.ncbi.nlm.nih.gov/pubmed/18218029
  37. Mann K.H. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limn. Oceanogr., 1988, 33(4(2)): 910–930.
  38. Massana R., Pedrós-Alió C. Unveiling new microbial eukaryotes in the surface ocean. Curr. Opin. Microbiol., 2008, 11(3): 213–218. https://doi.org/10.1016/j.mib.2008.04.004 https://www.ncbi.nlm.nih.gov/pubmed/18556239
  39. O'Brien H.E., Parrent J.L., Jackson J.A., Moncalvo J.-M., Vilgalys R. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol., 2005, 71(9): 5544–5550. https://doi.org/10.1128/AEM.71.9.5544–5550.2005
  40. Ogram A., Sayler G.S., Barkay T. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods, 1987, 7(2–3): 57–66. https://doi.org/10.1016/0167-7012(87)90025-X
  41. Olsen G.J., Lane D.J., Giovannoni S.J., Pace N.R., Stahl D.A. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol., 1986, 40: 337–365. https://doi.org/10.1146/annurev.mi.40.100186.002005 https://www.ncbi.nlm.nih.gov/pubmed/2430518
  42. Overballe-Petersen S., Harms K., Orlando L.A.A., Mayar V.M., Rasmussen S., Dahl T.W., Rosing M.T., Poole A.M., Sicheritz-Ponten Th., Brunak S., Inselmann S., Vries J. de, Wackernagel W., Pybus O.G., Nielsen B., Johnsen P.J., Nielsen K.M., Willerslev E. Bacterial natural transformation by highly fragmented and damaged DNA. Proc. Natl Acad. Sci. USA, 2013, 110(49): 19860–19865. https://doi.org/10.1073/pnas.1315278110 https://www.ncbi.nlm.nih.gov/pubmed/24248361 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856829
  43. Paul J.H., Jeffrey W.H., DeFlaun M.F. Dynamics of extracellular DNA in the marine environment. Appl. Environ. Microbiol., 1987, 53(1): 170–179. https://www.ncbi.nlm.nih.gov/pubmed/3827244 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC203621
  44. Paul J.H., Jeffrey W.H., David A.W., DeFlaun M.F., Cazares L.H. Turnover of extracellular DNA in eutrophic and oligotrophic freshwater environments of southwest Florida. Appl. Environ. Microbiol., 1989, 55(7): 1823–1828. https://www.ncbi.nlm.nih.gov/pubmed/16347976 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC202957
  45. Pietramellara G., Ascher J., Borgogni F., Ceccherini M.T., Guerri G., Nannipieri P. Extracellular DNA in soil and sediment: fate and ecological relevance. Biol. Fertil. Soils, 2009, 45(3): 219–235. https://doi.org/10.1007/s00374-006-0156-8
  46. Porter T.M., Schadt C.W., Rizvi L., Martin A.P., Schmidt S.K., Scott-Denton L., Vilgalys R., Moncalvo J.M. Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Mol. Phylogen. Evol., 2008, 46(2): 635–644. https://doi.org/10.1016/j.ympev.2007.10.002 https://www.ncbi.nlm.nih.gov/pubmed/18032071
  47. Poté J., Mavingui P., Navarro E., Rosselli W., Wildi W.P., Vogel T.M. Extracellular plant DNA in Geneva groundwater and traditional artesian drinking water fountains. Chemosphere, 2009, 75(4): 498–504. https://doi.org/10.1016/j.chemosphere.2008.12.048 https://www.ncbi.nlm.nih.gov/pubmed/19171370
  48. Prober S.M., Leff J.W., Bates S.T., Scott T., Borer E.T., Firn J., Harpole W.S., Lind E.M., Seabloom E.W., Adler P.B., Bakker J.D., Cleland E.E., DeCrappeo N.M., DeLorenze E., Hagenah N., Hautier Y., Hofmockel K.S., Kirkman K.P., Knops J.M.H., La Pierre K.J., MacDougall A.S., McCulley R.L., Mitchell Ch.E., Risch A.C., Schuetz M., Stevens C.J., Williams R.J., Fierer N., Klironomos J. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett., 2015, 18(1): 85–95. https://doi.org/10.1111/ele.12381 https://www.ncbi.nlm.nih.gov/pubmed/25430889
  49. Raghukumar S. The role of fungi in marine detrital processes. In: Marine microbiology: Facets and opportunities. Ed. N. Ramaiah, India: Natl. Inst. of Oceanography, 2004, pp. 91–101.
  50. Richards T.A., Bass D. Molecular screening of free-living microbial eukaryotes: diversity and distribution using a meta-analysis. Curr. Opin. Microbiol., 2005, 8(3): 240–252. https://doi.org/10.1016/j.mib.2005.04.010 https://www.ncbi.nlm.nih.gov/pubmed/15939346
  51. Rosling A., Cox F., Cruz-Martinez K., Ihrmark K., Grelet, G.-A., Lindahl B. D., Menkis A., James T. Y.. Archaeorhizomycetes: Unearthing an ancient class of ubiquitous soil fungi. Science, 2011, 333(6044): 876–879. https://doi.org/10.1126/science.1206958 https://www.ncbi.nlm.nih.gov/pubmed/21836015
  52. Schadt C.W., Martin A.P., Lipson D.A., Schmidt S.K. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science, 2003, 301(5638): 1359–1361. https://doi.org/10.1126/science.1086940 https://www.ncbi.nlm.nih.gov/pubmed/12958355
  53. Shirouzu T., Uno K., Hosaka K., Hosoya T. Early-diverging wood-decaying fungi detected using three complementary sampling methods. Mol. Phyl. Evol., 2016, 98: 11–20. https://doi.org/10.1016/j.ympev.2016.01.015 https://www.ncbi.nlm.nih.gov/pubmed/26850687
  54. Šlapeta J., Moreira D., López-García P. The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc. R. Soc. B, 2005, 272(1576): 2073–2081. https://doi.org/10.1098/rspb.2005.3195
  55. Soumya K.S., Jimly C.J., Neil S.C., Smitha S.L., Ramya K.D., Anil Kumar P.R., Manuel Th., Rosamma Ph. Filamentous fungal isolates from the continental shelf and slope sediments of Arabian Sea. Int. J. Res. Mar. Sci., 2013, 2(1): 26–32.
  56. Suh S.-O., McHugh J.V., Pollock D.D., Blackwell M. The beetle gut: a hyperdiverse source of novel yeasts. Mycol. Res., 2005, 109(3): 261–265. https://doi.org/10.1017/S0953756205002388 https://www.ncbi.nlm.nih.gov/pubmed/15912941 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943959
  57. Taberlet P., Prud'Homme S.M., Campione E., Roy J., Miquel C., Shehzad W., Gielly L., Rioux D., Choler P., Clément J.-C., Melodelima C., Pompanon F., Coissac E. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol. Ecol., 2012, 21(8): 1816–1820. https://doi.org/10.1111/j.1365-294X.2011.05317.x https://www.ncbi.nlm.nih.gov/pubmed/22300434
  58. Takishita K., Tsuchiya M., Reimer J.D., Maruyama T. Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles, 2006, 10(2): 165–169. https://doi.org/10.1007/s00792-005-0495-7 https://www.ncbi.nlm.nih.gov/pubmed/16341819
  59. Thomsen Ph.F., Kielgast J., Iversen L.L., Wiuf C., Rasmussen M., Gilbert M.Th.P., Orlando L., Willerslev E. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol., 2011, 21(11): 2565–2573. https://doi.org/10.1111/j.1365-294X.2011.05418.x https://www.ncbi.nlm.nih.gov/pubmed/22151771
  60. Thomsen Ph.F., Kielgast J., Iversen L.L., Møller P.R., Rasmussen M., Willerslev E. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE, 2012, 7(8), e41732. https://doi.org/10.1371/journal.pone.0041732 https://www.ncbi.nlm.nih.gov/pubmed/22952584 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3430657
  61. Thomsen Ph.F., Willerslev E. Environmental DNA – An emerging tool conservation for monitoring past and present biodiversity. Biol. Conserv., 2015, 183: 4–18. https://doi.org/10.1016/j.biocon.2014.11.019
  62. Vandenkoornhuyse P., Baldauf S.L., Leyval C., Straczek J., Young J.P.W. Extensive fungal diversity in plant roots. Science, 2002, 295(5562): 2051. https://doi.org/10.1126/science.295.5562.2051 https://www.ncbi.nlm.nih.gov/pubmed/11896270
  63. Vincent J.B., Weiblen G.D., May G. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees. Mol. Ecol., 2016, 25(3): 825–841. https://doi.org/10.1111/mec.13510 https://www.ncbi.nlm.nih.gov/pubmed/26661903
  64. Willerslev E., Hansen A.J., Binladen J., Brand T.B., Gilbert M.Th.P., Shapiro B., Bunce M., Wiuf C., Gilichinsky D.A., Cooper A. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science, 2003, 300(5620): 791–795. https://doi.org/10.1126/science.1084114 https://www.ncbi.nlm.nih.gov/pubmed/12702808
  65. Willerslev E., Hansen A.J., Rønn R., Brand T.B., Barnes I., Wiuf C., Gilichinsky D.A., Mitchell D., Cooper A. Long-term persistence of bacterial DNA. Curr. Biol., 2004, 14(1): R9–R10. https://doi.org/10.1016/j.cub.2003.12.012 https://www.ncbi.nlm.nih.gov/pubmed/14711425
  66. Willerslev E., Cappellini E., Boomsma W., Nielsen R., Hebsgaard M.B., Brand T.B., Hofreiter M., Bunce M., Poinar H.N., Dahl-Jensen D., Johnsen S., Steffensen J.P., Bennike O., Schwenninger J.-L., Nathan R., Armitage S., Hoog C.-J. de, Alfimov V., Christl M., Beer J., Muscheler R., Barker J., Sharp M., Penkman K.E.H., Haile J., Taberlet P., Gilbert M.Th.P., Casoli A., Campani E., Collins M.J. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science, 2007, 317(5834): 111–114. https://doi.org/10.1126/science.1141758 https://www.ncbi.nlm.nih.gov/pubmed/17615355 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694912