ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 12 of 12
Up
Ukr. Bot. J. 2017, 74(1): 86–93
https://doi.org/10.15407/ukrbotj74.01.086
Plant Physiology, Biochemistry, Cell and Molecular Biology

Methods in laboratory and field research of chlorophyll fluorescence

Polishchuk O.V.
Abstract

Chlorophyll fluorescence analysis is one of the most popular techniques used in the laboratory and field study of plants. This brief review discusses basic methodological approaches and parameters in chlorophyll fluorescence studies and their use in basic and applied plant physiology research. Being principally non-intrusive, chlorophyll fluorescence analysis allows distant monitoring of intact plants' physiological state and early detection of stresses in situ.

Keywords: chlorophyll fluorescence, photosynthesis, PAM fluorescence, photosynthetic efficiency, remote sensing

Full text: PDF (Ukr) 796K

References
  1. Bukhov N.G., Egorova E., Krendeleva T. Relaxation of variable chlorophyll fluorescence after illumination of dark-adapted barley leaves as influenced by the redox states of electron carriers. Photosynth. Res., 2001, 70: 155–166. https://doi.org/10.1023/A:1017950307360 https://www.ncbi.nlm.nih.gov/pubmed/16228349
  2. Bukhov N.G., Mohanty P., Rakhimberdieva M.G., Karapetyan N.V. Analysis of dark-relaxation kinetics of variable fluorescence in intact leaves. Planta, 1992, 187: 122–127. https://doi.org/10.1007/BF00201633 https://www.ncbi.nlm.nih.gov/pubmed/24177976
  3. Gouveia-Neto A.S., Silva E.A., da Silva A.J., do Nascimento C.W.A. Heavy metal stress detection and monitoring via LED-induced chlorophyll fluorescence analysis of Zea mays L. seedlings aimed at polluted soil phytoremediation. In: Proc. SPIE 8225, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues X, available at: http://spie.org/822505 (accessed 9 February 2012).
  4. Kautsky H., Hirsch A. Neue Versuche zur Kohlensaure-assimilation, Naturwissenschaften, 1931, 119: 964–964. https://doi.org/10.1007/BF01516164
  5. Korneev D.Yu. Informatsyonnye vozmozhnosti metoda induktsyi fluorestsentsyi khlorofilla, Kiev: Alterpress, 2002, 188 pp.
  6. Krieger A., Rutherford A.W., Johnson G.N. On the determination of redox midpoint potential of the primary quinone electron acceptor, QA, in Photosystem II. Biochim. Biophys. Acta, 1995, 1229: 193–201. https://doi.org/10.1016/0005-2728(95)00002-Z
  7. Lysenko V.S., Varduny T.V., Soyer V.H., Krasnov V.P. Fundamentalnye issledovaniya, 2013, 4(1): 112–120.
  8. Maxwell K., Johnson G.N. Chlorophyll fluorescence – a practical guide. J. Exp. Bot., 2000, 51(345): 659–668. https://www.ncbi.nlm.nih.gov/pubmed/10938857
  9. Meroni M., Rossini M., Guanter L., Alonso L., Rascher U., Colombo R., Moreno J. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ., 2009, 113(10): 2037–2051. https://doi.org/10.1016/j.rse.2009.05.003
  10. Mokrosnop V.M., Polishchuk O.V., Zolotareva O.K. Dopovidi NAN Ukrainy, 2015, 10: 77–84.
  11. Muller N.J.C. Beziehungen zwischen Assimilation, Absorption und Fluoreszenz im Chlorophyll des lebenden Blattes. Jahrbücher für Wissenschaftliche Botanik, 1874, 9: 42–49.
  12. Pieruschka R., Klimov D., Berry J.A., Osmond C.B., Rascher U., Kolber Z.S. Remote chlorophyll fluorescence measurements with the laser-induced fluorescence transient approach. Meth. Mol. Biol., 2012, 918: 51–59. https://doi.org/10.1007/978-1-61779-995-2_5 https://www.ncbi.nlm.nih.gov/pubmed/22893285
  13. Polishchuk A.V., Topchiy N.N., Sytnyk K.M. Dopovidi NAN Ukrainy, 2009, 6: 203–209.
  14. Polishchuk A.V., Voitsekhovich A.A. Photosynthetic Properties of Some Free-Living and Lichenized Green Terrestrial Algae. Int. J. Algae, 2014, 4: 369–376. https://doi.org/10.1615/InterJAlgae.v16.i4.60
  15. Polishchuk O.V., Vodka M.V., Belyavskaya N.A., Khomochkin A.P., Zolotareva E.K. The Effect of Acid Rain on Ultrastructure and Functional Parameters of Photosynthetic Apparatus in Pea Leaves. Cell and Tissue Biology, 2016, 10(3): 250–257. https://doi.org/10.1134/S1990519X16030093
  16. Rabinowitch E., Govindjiee. Photosyntethesis, New York: John Wiley & Sons Inc., 1969, 263 pp.
  17. Rohacek K. Chlorophyll Fluorescence Parameters: The Definitions, Photosynthetic Meaning, and Mutual Relationships. Photosynthetica, 2002, 40(1): 13–29. https://doi.org/10.1023/A:1020125719386
  18. Strasser R.J., Srivastava A., Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Eds P. Mohanty, M. Yunus, U. Pathre, London: Taylor and Francis, 2000, pp. 443–480.
  19. Tubuxin B., Rahimzadeh-Bajgiran P., Ginnan Yu., Osoi F., Omasa K. Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves, J. Exp. Bot., 2015, 66(18): 5595–5603. https://doi.org/10.1093/jxb/erv272 https://www.ncbi.nlm.nih.gov/pubmed/26071530 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585421
  20. Vodka M.V., Polishchuk A.V., Belyavskaya N.A., Zolotareva E.K. Visnyk Kharkivskoho nats. ahrar. un-tu, Ser. Biol., 2013, 3: 46–55.
  21. Warburg O. Uber die Geschwindigkeit der photochemischen Kohlensaeurezersetzung in lebenden Zellen. II. Biochem. Zeitschr., 1920, 103: 188–366.