ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 8 of 10
Up
Ukr. Bot. J. 2016, 73(3): 277–282
https://doi.org/10.15407/ukrbotj73.03.277
Plant Physiology, Biochemistry, Cell and Molecular Biology

Endogenous cytokinins of the water fern Salvinia natans (Salviniaceae)

Vedenicheva N.P., Kosakivska I.V.
Abstract

Endogenous cytokinins in organs of heterosporous annual hydrophyte fern Salvinia natans were studied for the first time. The main phytohormone isoforms were detected by HPLC: trans- and cis-zeatin, zeatin riboside, zeatin-Oglucoside, isopentenyladenosine and isopentenyladenine. The highest total active free cytokinins content was detected in floating fronds at the beginning of sporophyte development (stage of intensive growth). Conjugated form of zeatin appeared in organs at the reproductive stage of fern development, when the growth stopped. High cytokinins level was determined in sporocarps where intensive formation and maturation of spores took place. Changes in cytokinins spectrum and content in S. natans organs correspond to the fern development stages and indirectly indicate the phytohormone participation in growth and reproductive processes regulation. Cytokinins distribution between floating and submerged fronds gave evidence of functional non-equivalence of these organs and more significant role of floating fronds in phytohormone production.

Keywords: Salvinia natans, fern, cytokinins, ontogenesis, growth, development

Full text: PDF (Ukr) 1.66M

References
  1. Abul Y., Menendez V., Gomez-Campo C., Revilla M.A., Lafont F. J. Plant Physiology, 2010, 167(14): 1211–1213. http://dx.doi.org/10.1016/j.jplph.2010.03.015
  2. Babenko L.M., Sheyko O.A., Kosakivska I.V., Vedenichova N.P., Nehretskiy V.A., Vasheka O.V. The Bulletin of Kharkiv National Agrarian University. Ser. Biology, 2015, 1(34): 80–103.
  3. Bartrina I., Otto E., Strnad M., Werner T., Schmulling T. The Plant Cell, 2011, 23: 69–80. http://dx.doi.org/10.1105/tpc.110.079079
  4. Chen S.Y., Read P.E. Proc. Fla. State Hort., 1983, 96: 266–269.
  5. Chia S.-G.E., Raghavan V. New Phytol., 1982, 92: 31–37. http://dx.doi.org/10.1111/j.1469-8137.1982.tb03360.x
  6. Frebort I., Kowalska M., Hluska T., Frebortova J., Galuszka P. J. Exp. Bot., 2011, 62(8): 2431–2452. http://dx.doi.org/10.1093/jxb/err004
  7. Greer G.K., Dietrich M.A., De Vol J.A., Rebert A. Am. Fern J., 2012, 102(1): 32–46. http://dx.doi.org/10.1640/0002-8444-102.1.32
  8. Hwang I., Sheen J., Muller B. Annual Review of Plant Biology, 2012, 63: 353–380. http://dx.doi.org/10.1146/annurev-arplant-042811-105503
  9. Kamada-Nobusada T., Sakakibara H. Phytochemistry, 2009, 70(4): 444–449. http://dx.doi.org/10.1016/j.phytochem.2009.02.007
  10. Kieber J.J., Schaller G.E. Cytokinins, The Arabidopsis Book, 2014, 11:e0168. http://dx.doi.org/10.1199/tab.0168
  11. Kholodny N.G. J. Russ. Bot. Soc., 1924, 7: 153–160.
  12. Matsuo S., Kikuchi K., Fukuda M., Honda I., Imanishi S. J. Exp. Bot., 2012, 63: 5569–5579. http://dx.doi.org/10.1093/jxb/ers207
  13. Menendez V., Abul Y., Bohanec B., Lafont F., Fernandez H. Acta Physiologiae Plantarum, 2011, 33(6): 2493–2500. http://dx.doi.org/10.1007/s11738-011-0794-9
  14. Murai N. Am. J. Plant Sci., 2014, 5: 2178–2187. http://dx.doi.org/10.4236/ajps.2014.514231
  15. Musatenko L., Vedenicheva N., Vasyuk V., Generalova V., Martyn G., Sytnik K. Russian J. Plant Physiol., 2003, 50(4): 499–504. http://dx.doi.org/10.1023/A:1024704303406
  16. Paull R.E., Chantrachit T. Postharvest Biology and Technology, 2001, 21(3): 303–310. http://dx.doi.org/10.1016/S0925-5214(00)00153-8
  17. Pilate G., Sossountzov L., Miginiac E. Plant Physiol., 1989, 90: 907–912. http://dx.doi.org/10.1104/pp.90.3.907
  18. Rijavec T., Dermastia M. Acta Chimica Slovenica, 2010, 57(3): 617–629.
  19. Schaller G.E., Street I.H., Kieber J.J. Curr. Opin. Plant Biol., 2014, 21: 7–15. http://dx.doi.org/10.1016/j.pbi.2014.05.015
  20. Shcherbatiuk M.M., Babenko L.M., Sheyko O.A., Kosakivska I.V. Modern Phytomorphology, 2015, 7: 129–133.
  21. Spichal L. Funct. Plant Biol., 2012, 39(4): 267–284. http://dx.doi.org/10.1071/FP11276
  22. Spichal L., Rakova N.Y., Riefler M., Mizuno T., Romanov G.A., Strnad M., Schmulling T. Plant and Cell Physiology, 2004, 45: 1299–1305. http://dx.doi.org/10.1093/pcp/pch132
  23. Spiro M.D., Torabi B., Cornell C.N. Plant Cell Physiol., 2004, 45(9): 1252–1260. http://dx.doi.org/10.1093/pcp/pch146
  24. Stirk W.A., Van Staden J. Environment and Experimental Botany, 2003, 49(1): 77–85. http://dx.doi.org/10.1016/S0098-8472(02)00061-8
  25. Vankova R. Cytokinin regulation of plant growth and stress responses. In: Phytohormones: A window to metabolism, signaling and biotechnological applications. Eds L.-S.P. Tran, S. Pal, New York; Heidelberg; Dordrecht; London: Springer Science + Business Media, 2014, pp. 55–80. http://dx.doi.org/10.1007/978-1-4939-0491-4_3
  26. Vedenicheva N.P., Musatenko L.I. The Bulletin of Kharkiv National Agrarian University. Ser. Biology, 2008, 3(15): 15–23.
  27. Vedenicheva N.P., Sytnik K.M. Reports of NAS of Ukraine, 2013, 11: 150–156.
  28. Vedenicheva N.P., Kosakivska I.V. Plant Physiology and Genetics, 2016, 4(1): 3–15.
  29. Yamane H., Watanabe M., Satoh Y., Takahashi N., Iwatsuki K. Plant and Cell Physiology, 1983, 24(6): 1027–1031.