ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 11 of 11
Ukr. Bot. J. 2016, 73(2): 194–203
Plant Physiology, Biochemistry, Cell and Molecular Biology

Variation in dynamics of the heat shock proteins HSP70 synthesis in Malva sylvestris and M. pulchella (Malvaceae) in connection with tolerance to high temperature, flooding and drought

Kozeko L.Ye.1, Rakhmetov D.B.2

Tolerance ranges and heat shock protein HSP70 synthesis pattern in Malva sylvestris ‘Krasavka' and M. pulchella 'Sylva' were analyzed under high temperature, soil flooding and drought. Juvenile plants of the species showed close tolerance ranges; at that, M. sylvestris was some more thermotolerant and more sensitive to flooding, comparatively to M. pulchella. Western-blot analysis revealed the identical spectrum and equal basic level of the cytosolic HSP70s in the related species, as well as similar stressor-specific pattern of their synthesis. High thermo- and drought tolerance of the species corresponded to their ability to long and intensive synthesis of the constitutive and inducible proteins, which increased at near lethal doses. The stress reaction to flooding included a rapid, but short activation of the inducible HSP70 synthesis and a decrease in the content of the constitutive protein for the first hours that could be protective under short waterlogging and associated with the inability of the species to long-term survival in such conditions. Species-specific differences related to the time course and magnitude of the HSP70 synthesis. The obtained results suggest that molecular mechanisms underlying the high tolerance in plants include the ability to extended and intensive synthesis of both inducible and constitutive HSP70s under long-term influence of an unfavorable factor.

Keywords: Malva sylvestris, M. pulchella, tolerance range, stress reaction, heat shock proteins 70

Full text: PDF (Ukr) 1.46M

  1. Banti V., Loreti E., Novi G., Santaniello A., Alpi A., Perata P. Plant Cell Environ., 2008, 31: 1029–1037.
  2. Bedulina D.S., Evgen'ev M.B., Timofeyev M.A., Protopopova M.V., Garbuz D.G., Pavlichenko V.V., Luckenbach T., Shatilina Z.M., Axenov-Gribanov D.V., Gurkov A.N., Sokolova I.M., Zatsepina O.G. Mol. Ecol., 2013, 22: 1416–1430.
  3. Bray E.A. Ann. Bot., 2002, 89: 803–811.
  4. Dutton J.M., Hofmann G.E. J. Exp. Mar. Biol. Ecol., 2009, 376: 37–42.
  5. Evgen'ev M.B., Garbuz D.G., Shilova V.Y., Zatsepina O.G. , J. Biosci., 2007, 32: 489–499.
  6. Gamburg K.Z., Korotaeva N.E., Baduev B.K., Borovsky G.B., Voinikov V.K. Russian J. Plant Physiol., 2014, 61(3): 318–323.
  7. Garbuz D.G., Yushenova I.A., Zatsepina O.G., Przhiboro A.A., Bettencourt B.R., Evgen'ev M.B. BMC Evol. Biol., 2011, 11(74): 17 pp., available at: (accessed 23 December 2015).
  8. Jackson M.B. Plant survival in wet environments: resilience and escape mediated by shoot systems. In: Wetlands: functioning, biodiversity conservation, and restoration. Eds R. Bobbink et al., Berlin; Heidelberg: Springer, 2006, pp. 15–36.
  9. Jackson M.B., Ricard B. Physiology, biochemistry and molecular biology of plant root systems subjected to flooding of the soil. In: Root ecology. Eds de Kroon H., Visser E.J.W., Berlin; Heidelberg: Springer, 2003, pp. 193–213.
  10. Klueva N.Yu., Samohvalov I.M. Russian J. Plant Physiol., 1990, 37(4): 739–747.
  11. Kolupaev Yu.Ye., Karpets Yu.V. Formation of adaptive reactions of plants on the action of abiotic stress factors, Kyiv: Osnova, 2010, 350 pp.
  12. Kordyum E.L., Sytnik K.M., Baranenko V.V., Beliavskaia N.A., Klimchuk D.A., Nedukha E.M. Cell mechanisms of plant adaptation to unfavorable influence of ecological factors in field conditions, Kyiv: Naukova Dumka, 2003, 277 pp.
  13. Kosakivska I.V. Physiological and biochemical mechanisms of plant adaptation to stresses, Kyiv: Stall, 2003, 191 pp.
  14. Kozeko L.Ye. Cell Tissue Biol., 2014, 8(5): 416–422.
  15. Kozeko L.Ye., Artemenko O.A., Zaslavsky V.A., Didukh A.Ya., Rakhmetov D.B., Martynyuk G.M., Didukh Ya.P., Kordyum Ye.L. Ukr. Bot. J., 2011, 68(6): 890–900.
  16. Kozeko L.Ye., Ovcharenko Yu.V. Ukr. Bot. J., 2015, 72(2): 172–179.
  17. Laemmli U.K. Nature, 1970, 227(5259): 680–685.
  18. Lichtenthaler H.K. The stress concept in plants: an introduction. In: Stress of life from molecules to man, Ed. P. Csermely, Ann. NY Acad. Sci., 1998, 851, pp. 187–198. Margulis B.A., Guzhova I.V. Tsitologia, 2000, 42(4): 323–342.
  19. Odum E. Ecology, Moscow: Mir, 1986, vol. 1, 328 pp.
  20. Olyanitskaya L.G., Tsvelev N.N. Malva. In: Flora Vostochnoi Evropy (Flora Europae Orientalis). Ed. N.N. Tsvelev, St. Petersburg: Mir i Semiya, 1996, vol. 9, pp. 239–246.
  21. Olyanitskaya L.G. Malva. In: Opredelitel vysshikh rasteniy Ukrainy, Kyiv: Phytosotsiocentre, 1999, pp. 141–142.
  22. Rakhmetov D.B. Kormovye malvy v agrofitocenozakh lesostepi Ukrainy: introdukciya, biologiya, sorta, vozdelyvanie, Kyiv: Phytosociocentre, 2000, 288 pp.
  23. Roberts J.K.M., Wemmer D., Ray P.M., Jardetsky O. Plant Physiol., 1982, 69: 1344–1347.
  24. Schumann W. Heat shock response, eLS, 2001: 7 pp., available at: (accessed 23 December 2015).
  25. Shatilina Z.M., Riss H.W., Protopopova M.V., Trippe M., Meyer E.I., Pavlichenko V.V., Bedulina D.S., Axenov-Gribanov D.V., Timofeyev M.A. J. Therm. Biol., 2011, 36: 142–149.
  26. Sørensen J.G., Kristensen T.N., Loeschcke V. Ecol. Lett., 2003, 6: 1025–1037.
  27. Sung D.Y., Vierling E., Guy C.L. Plant Physiol., 2001, 126: 789–800.
  28. Wang X.Q., Yang P.F., Liu Z., Liu W.Z., Hu Y., Chen H., Kuang T.Y., Pei Z.M., Shen H.S., He Y.K. Plant Physiol., 2009, 149: 1739–1750.
  29. Wong C.E., Li Y., Whitty B.R., Diaz-Camino C., Akhter S.R., Brandle J.E., Golding G.B., Weretilnyk E.A., Moffatt B.A., Griffith M. Plant Mol. Biol., 2005, 58: 561–574.
  30. Ye T., Shi H., Wang Y., Chan Z. Front. Plant Sci., 2015, 6(951): 14 pp., available at: (accessed 23 December 2015).
  31. Yung T.E., Ling J., Geisler-Lee C.J., Tanguay R.L., Caldwell C., Gallie D.R. Plant Physiol., 2001, 127: 777–791.