ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 10 of 11
Up
Ukr. Bot. J. 2016, 73(2): 185–193
https://doi.org/10.15407/ukrbotj73.02.185
Plant Physiology, Biochemistry, Cell and Molecular Biology

Organization of microfilaments in roots of water-terrestrial Sium latifolium (Apiaceae) and Alisma plantago-aquatica (Alismataceae) plants in the process of aerenchyma formation

Shevchenko G.V., Kordyum E.L.
Abstract

The data on actin microfilament organization in roots of water-terrestrial plants Sium latifolium and Alisma plantago-aquatica are presented in the article. The main attention is paid to cells surrounding aerenchyma cavities in meristem and elongation zone of the roots. Some of these cells undergo degradation in the special way distinct from the same process in other plant species. Peculiarities of aerenchyma formation in roots of water-terrestrial S. latifolium and A. plantago-aquatica are noted. Regulation of actin microfilament activity is discussed as well as their involvement in the processes of growth and aerenchyma formation.

Keywords: cytoskeleton, actin microfilaments, water-terrestrial plants, aerenchyma

Full text: PDF (Ukr) 1.60M

References
  1. Ayscough K.R. Curr. Biol., 2000, 10(24): 1587–1590. http://dx.doi.org/10.1016/S0960-9822(00)00859-9
  2. Baluška F., Hasenstein K. Planta, 1997, 203: 69–78. http://dx.doi.org/10.1007/PL00008117
  3. Baluška F., Kreibaum A., Vitha S., Parker J., Barlow P., Sievers A. Protoplasma, 1997a, 196: 212–223. http://dx.doi.org/10.1007/BF01279569
  4. Baluška F., Vitha S., Barlow P.W., Volkmann D. Eur. J. Cell Biol., 1997b, 72: 113–121.
  5. Baluška F., Voklmann D., Barlow P. J. Plant Growth Regul., 2001, 20: 170–181. http://dx.doi.org/10.1007/s003440010013
  6. Baskin T., Wilson J., Cork A., Williamson R. , Plant Cell Physiol., 1994, 35: 935–942.
  7. Basu R., Chang F. Curr Biol., 2011, 21(11): 905–916. http://dx.doi.org/10.1016/j.cub.2011.04.047
  8. Blancaflor E.B. J. Plant Growth Regul., 2002, 21: 120–136. http://dx.doi.org/10.1007/s003440010041
  9. Blancaflor E., Hasenstein K. Plant Physiol., 1997, 113: 1447–1455. http://dx.doi.org/10.1104/pp.113.4.1447
  10. Bouranis D.L., Chorianopoulou S.N., Kollias Ch., Maniou P., Protonotarious V.E., Siyiannis V.F., Hawkesford M.J. Ann. Bot., 2006, 97: 695–704. http://dx.doi.org/10.1093/aob/mcl024
  11. Collings D., Allen N. Cortical actin interacts with the plasma membrane and microtubules. In: Actin: a dynamic framework for multiple plant cell functions. Eds C. Staiger, F. Balushka, D. Volkmann, P. Barlow, Dordrecht, The Netherlands: Kluwer Academic Publishers, 2000, pp. 145–164. http://dx.doi.org/10.1007/978-94-015-9460-8_9
  12. Collings D., Zsuppan G., Alien N., Blancaflor E. Planta, 2001, 212: 392–403. http://dx.doi.org/10.1007/s004250000406
  13. Dhindsa R.S., Matowe W. J. Exp. Bot., 1981, 32: 79–91. http://dx.doi.org/10.1093/jxb/32.1.79
  14. Foyer C.H., Noctor G. Physiol. Plant., 2003, 119: 335–364. http://dx.doi.org/10.1034/j.1399-3054.2003.00223.x
  15. Gilroy S., Trewavas A.J. Nat. Rev. Mol. Cell Biol., 2001, 2: 307314. http://dx.doi.org/10.1038/35067109
  16. Hawes C.R., Satiat-Jeunemaitre B. Plant Physiol., 2001, 125: 119–122. http://dx.doi.org/10.1104/pp.125.1.119
  17. Jackson M.B., Colmer T.D. Ann. Bot., 2005, 96: 501–505. http://dx.doi.org/10.1093/aob/mci205
  18. Jedd G., Chua N.H. Plant Cell Physiol., 2002, 43(4): 384–392. http://dx.doi.org/10.1093/pcp/pcf045
  19. Ketelaar T., Emons A.M.C. New Phytol., 2001, 152: 409–418. http://dx.doi.org/10.1046/j.0028-646X.2001.00278.x
  20. Kim S., Hwang S.G., Kim I.C., Chun J.S. J. Biol. Chem., 2003, 278: 42448–42456. http://dx.doi.org/10.1074/jbc.M304887200
  21. Kordyum E.L., Sytnyk K.M., Baranenko V.V. Kletochnye mekhanyzmy adaptatsyi rastenyi, Kyiv: Naukova Dumka, 2003, 229 pp.
  22. Lancetti L., Palamidessi A., Areces L., Scita G., Di Fiore P. Nature, 2004, 429: 309–314. http://dx.doi.org/10.1038/nature02542
  23. Leadsham J. E., Kotiadis V. N., Tarrant D. J., Gourlay C. W. Cell Death and Different., 2010, 17: 754–762. http://dx.doi.org/10.1038/cdd.2009.196
  24. Liu B., Palevitz B. Cell Motil. Cytoskeleton, 1992, 23: 252–264. http://dx.doi.org/10.1002/cm.970230405
  25. Liu Y., Bassham D.C. Annu. Rev. Plant Biol., 2012, 63: 215–237. http://dx.doi.org/10.1146/annurev-arplant-042811-105441
  26. McCurdy D., Sammut M., Gunning B. Protoplasma, 1988, 147: 204–206. http://dx.doi.org/10.1007/BF01403349
  27. Morley S.C., Sun G.P., Bierer B.E. J. Cell. Biochem., 2003, 88: 1066–1076. http://dx.doi.org/10.1002/jcb.10449
  28. Moldovan L., Mythreye K., Goldschmidt-Clermont P.J., Satterwhite L.L. Cardiovasc. Res., 2006, 71: 236–246. http://dx.doi.org/10.1016/j.cardiores.2006.05.003
  29. Muhlenbock P., Plaszczyca M., Mellerowicz E., Karpinski S. Plant Cell, 2007, 19: 3819–3830. http://dx.doi.org/10.1105/tpc.106.048843
  30. Seago J.L., Marsh L.C., Stevens K.J., Soukup A., Votrubova O., Enstone D.E. Ann. Bot., 2005, 96: 565–579. http://dx.doi.org/10.1093/aob/mci211
  31. Shevchenko G.V. Cytology and Genetics, 2009, 43(4): 223– 229. http://dx.doi.org/10.3103/S009545270904001X
  32. Suetsugu S., Yamazaki D., Kurisu S., Takenawa T. Dev. Cell, 2003, 5: 595–609. http://dx.doi.org/10.1016/S1534-5807(03)00297-1
  33. Van Gestel K., Kohler R.H., Verbelen J.P. J. Exp. Bot., 2001, 53: 659–667. http://dx.doi.org/10.1093/jexbot/53.369.659
  34. Voragen A.G.J., Schols H.A., Visser R.G.F. Advances in pectin and pectinase research, Dordrecht, The Netherlands: Kluwer Academic Publishers, 2003, 198 pp. http://dx.doi.org/10.1007/978-94-017-0331-4
  35. Wilkins K., Bancroft J., Bosch M., Ings J., Smirnoff N., Franklin-Tong V.E. Plant Physiol., 2011, 156: 404–416. http://dx.doi.org/10.1104/pp.110.167510