Ukr. Bot. J. 2015, 72(6): 603–609 https://doi.org/10.15407/ukrbotj72.06.603Plant Physiology, Biochemistry, Cell and Molecular Biology
Comparative analysis of the effect of nickel and cadmium on the organization of microtubules in the cells of the Arabidopsis thaliana primary roots
Horiunova I.I., Yemets A.I., Blume Y.B.- Institute of Food Biotechnology and Genomics, NAS of Ukraine
- 2a, Osipivskogo Str., Kyiv, 04123, Ukraine
Abstract
The influence of the most toxic heavy metals, nickel (Ni2+) and cadmium (Cd2+), on the intravital organization of microtubules in various types of Arabidopsis thaliana (L.) Heynh. root cells was investigated using laser scanning microscopy. To visualize the microtubules in vivo, the Arabidopsis line that expresses chimeric gene gfp-map4 was used. It was shown that Ni2+ and Cd2+ break the organization and orientation of microtubules in cells, leading to morphological changes of the root, as the main body of the plant, the first to be intoxicated by soil pollutants. It was found that the most sensitive to the effect of cadmium and nickel are microtubules of the cell division zones and transition zone of A. thaliana root. Cadmium has the strongest toxic effect which causes changes in microtubule organization of meristematic cells, cortex cells of the elongation zone and differentiation zone.
Keywords: root cells, cytoskeleton, microtubules, heavy metals, nickel, cadmium
Full text: PDF (Ukr) 1.19M
References
- Blume Ya.B., Krasylenko Y.A., Yemets A.I. Russ J. Plant Physiol., 2012, 59(4): 557–573. http://dx.doi.org/10.1134/S1021443712040036
- Buljan V., Yeung S., Rushdi S., Delikatny E.J., Hambly B. Biophys. J., 2001, 80: 99–111.
- Chen C., Huang D., Liu J. Clean, 2009, 37(4–5): 304–313.
- Dovgalyuk A., Kalynyak T., Blume Ya.B. Cell Biol. Int., 2003, 27: 193–195. http://dx.doi.org/10.1016/S1065-6995(02)00334-7
- Duffus J.H. Pure Appl. Chem., 2002, 74(5): 793–807. http://dx.doi.org/10.1351/pac200274050793
- Ehrhardt D.W., Shaw S.L. Annu. Rev. Plant Biol., 2006, 57: 859–875. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105329
- Horiunova I.I., Krasylenko Yu.A., Zaslavsky V.A, Yemets A.I., Dopov. Nac. akad. nauk Ukraine, 2014, 9: 127–133.
- Li W., Zhao Y., Chou I.-N. Toxicol. Appl. Pharmacol., 1996, 140: 461–470. http://dx.doi.org/10.1006/taap.1996.0243
- Liliom K., Wagner G., Pacz A., Cascante M., Kovacs J., Ovadi J. Eur. J. Biochem., 2000, 267: 473–479. http://dx.doi.org/10.1046/j.1432-1327.2000.01526.x
- Nick P. Plant J., 2013, 75: 309–323.
- Pribyl P., Cepák V., Zachlede V. Toxicol. in Vitro, 2008, 22: 1160–1168. http://dx.doi.org/10.1016/j.tiv.2008.03.005
- Takemoto D., Hardham A.R. Plant Physiol., 2004, 136: 3864–3876. http://dx.doi.org/10.1104/pp.104.052159
- Wallin M., Larrson H., Edstrom A. Exp. Cell Res., 1977, 107: 219–225. http://dx.doi.org/10.1016/0014-4827(77)90403-7
- Yemets A.I., Krasylenko Yu.A., Lytvyn D.I., Sheremet Ya.A., Blume Ya.B. Plant Sci., 2011, 181: 545–554. http://dx.doi.org/10.1016/j.plantsci.2011.04.017