ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 10 of 11
Up
Ukr. Bot. J. 2015, 72(6): 603–609
https://doi.org/10.15407/ukrbotj72.06.603
Plant Physiology, Biochemistry, Cell and Molecular Biology

Comparative analysis of the effect of nickel and cadmium on the organization of microtubules in the cells of the Arabidopsis thaliana primary roots

Horiunova I.I., Yemets A.I., Blume Y.B.
Abstract

The influence of the most toxic heavy metals, nickel (Ni2+) and cadmium (Cd2+), on the intravital organization of microtubules in various types of Arabidopsis thaliana (L.) Heynh. root cells was investigated using laser scanning microscopy. To visualize the microtubules in vivo, the Arabidopsis line that expresses chimeric gene gfp-map4 was used. It was shown that Ni2+ and Cd2+ break the organization and orientation of microtubules in cells, leading to morphological changes of the root, as the main body of the plant, the first to be intoxicated by soil pollutants. It was found that the most sensitive to the effect of cadmium and nickel are microtubules of the cell division zones and transition zone of A. thaliana root. Cadmium has the strongest toxic effect which causes changes in microtubule organization of meristematic cells, cortex cells of the elongation zone and differentiation zone.

Keywords: root cells, cytoskeleton, microtubules, heavy metals, nickel, cadmium

Full text: PDF (Ukr) 1.19M

References
  1. Blume Ya.B., Krasylenko Y.A., Yemets A.I. Russ J. Plant Physiol., 2012, 59(4): 557–573. http://dx.doi.org/10.1134/S1021443712040036
  2. Buljan V., Yeung S., Rushdi S., Delikatny E.J., Hambly B. Biophys. J., 2001, 80: 99–111.
  3. Chen C., Huang D., Liu J. Clean, 2009, 37(4–5): 304–313.
  4. Dovgalyuk A., Kalynyak T., Blume Ya.B. Cell Biol. Int., 2003, 27: 193–195. http://dx.doi.org/10.1016/S1065-6995(02)00334-7
  5. Duffus J.H. Pure Appl. Chem., 2002, 74(5): 793–807. http://dx.doi.org/10.1351/pac200274050793
  6. Ehrhardt D.W., Shaw S.L. Annu. Rev. Plant Biol., 2006, 57: 859–875. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105329
  7. Horiunova I.I., Krasylenko Yu.A., Zaslavsky V.A, Yemets A.I., Dopov. Nac. akad. nauk Ukraine, 2014, 9: 127–133.
  8. Li W., Zhao Y., Chou I.-N. Toxicol. Appl. Pharmacol., 1996, 140: 461–470. http://dx.doi.org/10.1006/taap.1996.0243
  9. Liliom K., Wagner G., Pacz A., Cascante M., Kovacs J., Ovadi J. Eur. J. Biochem., 2000, 267: 473–479. http://dx.doi.org/10.1046/j.1432-1327.2000.01526.x
  10. Nick P. Plant J., 2013, 75: 309–323.
  11. Pribyl P., Cepák V., Zachlede V. Toxicol. in Vitro, 2008, 22: 1160–1168. http://dx.doi.org/10.1016/j.tiv.2008.03.005
  12. Takemoto D., Hardham A.R. Plant Physiol., 2004, 136: 3864–3876. http://dx.doi.org/10.1104/pp.104.052159
  13. Wallin M., Larrson H., Edstrom A. Exp. Cell Res., 1977, 107: 219–225. http://dx.doi.org/10.1016/0014-4827(77)90403-7
  14. Yemets A.I., Krasylenko Yu.A., Lytvyn D.I., Sheremet Ya.A., Blume Ya.B. Plant Sci., 2011, 181: 545–554. http://dx.doi.org/10.1016/j.plantsci.2011.04.017