ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 9 of 10
Up
Ukr. Bot. J. 2015, 72(2): 172–179
https://doi.org/10.15407/ukrbotj72.02.172
Plant Physiology, Biochemistry, Cell and Molecular Biology

Dynamics of structural and functional Sium latifolium (Apiaceae) adaptation to root flooding

Kozeko L.Ye., Ovcharenko Yu.V.
Abstract

Dynamics and features of adaptive processes in juvenile terrestrial Sium latifolium L. plants to soil flooding for 10 days were studied. The results show consecutive activation of heat shock protein HSP70 synthesis, then alcohol dehydrogenase (ADH) synthesis – first in the roots and then in the leaves, and emergence of aerenchymatous adventitious roots after 2 days. The systemic induction and prolonged synthesis of the stress protein and anaerobic enzyme, the ability for rapid adventitious rooting, as well as the cooperation of the aerobic and anaerobic energetic processes in time and space are considered as important for flooding adaptation of the species.

Keywords: Sium latifolium, flooding, adaptation, heat shock protein 70, alcohol dehydrogenase, aerenchyma

Full text: PDF (Ukr) 2.35M

References
  1. Banti V., Loreti E., Novi G., Santaniello A., Alpi A., Perata P. Plant, Cell and Environment, 2008, 31: 1029–1037. http://dx.doi.org/10.1111/j.1365-3040.2008.01816.x
  2. Bradford M.M. Anal. Biochem., 1976, 72: 248–254. http://dx.doi.org/10.1016/0003-2697(76)90527-3
  3. Jackson M.B. Plant survival in wet environments: resilience and escape mediated by shoot systems. In: Wetlands: functioning, biodiversity conservation, and restoration. Eds. Bobbink R. et al., Springer, Berlin Heidelberg, 2006, pp. 15–36. http://dx.doi.org/10.1007/978-3-540-33189-6_2
  4. Jackson M.B., Ricard B. Physiology, biochemistry and molecular biology of plant root systerms subjectec to flooding of the soil. In: Root ecology. Eds. de Kroon H., Visser E.J.W, Springer, Berlin Heidelberg, 2003, pp. 193–213. http://dx.doi.org/10.1007/978-3-662-09784-7_8
  5. Kordyum E.L., Sytnik K.M., Baranenko V.V., Beliavskaia N.A., Klimchuk D.A., Nedukha E.M. Kletochnye mekhanizmy adaptatsii rasteniy k neblagopriyatnym vozdeystviyam ekologicheskikh faktorov v estestvennykh usloviyakh, 2003, Kiev: Naukova Dumka, 2003, 277 p.
  6. Kordyum Ye.L., Kozeko L.Ye., Ovcharenko Yu.V. Nauk. zap. Ternopilskogo nats. ped. un-tu. Ser. Biol., 2012, 52(3): 11–16.
  7. Kozeko L., Ovcharenko Yu., Kordyum E. Adv. Agricultural Sci. Problem, 2008, 524: 167–171.
  8. Kozeko L.E. Tsitologiya, 2014, 56(6): 419–426.
  9. Levites E.V. Genetika izofermentov rasteniy, Novosibirsk: Nauka, 1986, 145 p.
  10. Petrova S.E., Barykina R.P. Bot. zhurn., 2005, 90(12): 1836–1847.
  11. Rikar B. Fiziol. rast., 2003, 50(6): 891–900.
  12. Lichtenthaler H.K. The stress concept in plants: an introduction. In: Stress of life from molecules to man. Ed. P. Csermely, Ann. NY Acad. Sci., 1998, 851: 187–198. http://dx.doi.org/10.1111/j.1749-6632.1998.tb08993.x
  13. Loreti E., Poggi A., Novi G., Alpi A., Perata P. Plant Physiol., 2005, 137: 1130–1138. http://dx.doi.org/10.1104/pp.104.057299
  14. McManmon M., Crawford R.M.M. New Phytol., 1971, 70: 299–306. http://dx.doi.org/10.1111/j.1469-8137.1971.tb02529.x
  15. Porterfield D.M., Matthews S.W., Daugherty C.J., Musgrave M.E. Plant Physiol., 1997, 113: 685–693. http://dx.doi.org/10.1104/pp.113.3.685
  16. Roberts J.K.M., Wemmer D., Ray P.M., Jardetsky O. Plant Physiol., 1982, 69: 1344–1347. http://dx.doi.org/10.1104/pp.69.6.1344
  17. Schöffl F., Prändl R., Reindl A. Plant Physiol., 1998, 117: 1135–1141. http://dx.doi.org/10.1104/pp.117.4.1135
  18. Vartapetian B.B. Fiziol. rast., 2005, 52(6): 931–953.
  19. Wang W., Vinocur B., Shoseyov O., Altman A. Trends in Plant Sci., 2004, 9(5): 244–252. http://dx.doi.org/10.1016/j.tplants.2004.03.006