ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 12 of 13
Up
Ukr. Bot. J. 2015, 72(1): 74–78
https://doi.org/10.15407/ukrbotj72.01.074
Plant Physiology, Biochemistry, Cell and Molecular Biology

Thioredoxin, histone acetyltransferase, and deacetylase activities in the leaves of aerial-aquatic and terrestrial plants of Sium latifolium and Alisma plantago-aquatica

Zhadko S.I.
Abstract

Thioredoxin (TR), histone acetyltransferase (HAT), and histone deacetylase (HDAC) activities in plants of Sium latifolium and Alisma plantago-aquatica have been investigated. It is established that in the leaves of aerial-aquatic plants of S. latifolium growing in water, the TR, HAT and HDAC activities were lower than in terrestrial plants of the same species growing in the coastal zone. Relationship between the HDAC activity and reactive oxygen species (ROS) content in leaves of aerial-aquatic and terrestrial plants of A. plantago-aquatica was discovered. It is supposed that the HDAC is indirectly involved in maintaining of some pro-antioxidant level in cells to control accumulation of toxic ROS, especially under stress conditions.

Keywords: tioredoxin, histone acetyltransferase, histone deacetylase, reactive oxygen species, Sium latifolium, Alisma plantago-aquatica

Full text: PDF (Ukr) 586K

References
  1. Bigelow D. J., Squier T. C. Mol. Biosyst., 2011, 7(7): 2101–2109. http://dx.doi.org/10.1039/c1mb05081h
  2. Boyko A., Kovalchuk I. Environ. and Molecular Mutagenesis, 2008, 49(1): 61–72. http://dx.doi.org/10.1002/em.20347
  3. Bradford M.M. Anales Biochem., 1976, 72: 248–254. http://dx.doi.org/10.1016/0003-2697(76)90527-3
  4. Chen M., Lv S., Meng Y. Develop. Growth Differ., 2010b, 52: 555–566. http://dx.doi.org/10.1111/j.1440-169X.2010.01192.x
  5. Chen Z. J., Tiana L. Biochim. Biophys. Acta, 2007, 1769: 295–307.
  6. Chen L.T., Luo M., Wang Y.Y., Wu K. J. Experimental Botany, 2010a, 61(12): 3345–3353. http://dx.doi.org/10.1093/jxb/erq154
  7. Chinnusamy V., Zhu J.-K. Curr. Opinion Plant Biol., 2009, 12: 1–7. http://dx.doi.org/10.1016/j.pbi.2008.12.006
  8. Couturier J., Chibani K., Jacquot J. P., Rouhier N. Front. Plant Sci., 2013, 4(105): 1–7.
  9. Dietz K.-J. Physiol. Plantarum, 2008, 133: 459–468. http://dx.doi.org/10.1111/j.1399-3054.2008.01120.x
  10. Kolupaev Yu.E., Karpets Yu.V. Formirovanie adaptivnykh reaktsiy rasteniy na deystvie abioticheskikh stressorov, Kiev: Osnova, 2010, 350 p.
  11. Kordyum E.L., Sytnik K.M., Baranenko V.V. i dr. Kletochnye mekhanizmy adaptatsii rasteniy k neblagopriyatnym vozdeystviyam ekologicheskikh faktorov v estestvennykh usloviyakh, Kiev: Naukova Dumka, 2003, 277 p.
  12. Kumar S., Holmgren A. Carcinogenesis, 1999, 20(9): 1761–1767. http://dx.doi.org/10.1093/carcin/20.9.1761
  13. Meyer Y., Belin C., Delorme-Hinoux V., Reichheld J. P., Riondet C. Antioxid. Redox Signal, 2012, 17(8): 1124–1160. http://dx.doi.org/10.1089/ars.2011.4327
  14. Plokhinskiy N.A. Biometriya, Moscow: Izd-vo Mosk. un-ta, 1970, 367 p.
  15. Sun S., Han Y., Liu J., Fang Y., Tian Y., Zhou J., Ma D., Wu P. PLOS ONE, 2014, 9(3): 1–9.
  16. Santos C.V.D., Rey P. Trends in Plant Science, 2006, 11(7): 329–334. http://dx.doi.org/10.1016/j.tplants.2006.05.005
  17. Zhadko S. Visn. Lviv. un-tu. Ser. Biol., 2014, Vol. 64, pp. 287–292.
  18. Zhadko C.Y. Visn. Kharkiv. nats. agrarn. un-tu. Ser. Biol., 2012, Vol. 3 (27), pp. 58–64.
  19. Zhadko S.Y., Vorobyeva T.V., Syvash A.A., Klymchuk D.A. Nauk. zap. Ternopilskoho nats. ped. un-tu. Ser. Biol., 2011, 4 (49), pp. 99–103.
  20. Zhang X. Science, 2008, 320: 489–492. http://dx.doi.org/10.1126/science.1153996