ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 17 of 17
Up
Ukr. Bot. J. 2013, 70(4): 552–556
https://doi.org/10.15407/ukrbotj70.04.552
Plant Physiology, Biochemistry, Cell and Molecular Biology

Effect of short-term temperature stresses on HSP70 synthesis and level of hydrogen peroxide in Amaranthus caudatus L. seedlings

Kosakivska I.V.1, Negretsky V.A.1, Pushkarev V.M.2, Konturska O.A.1, Rakhmetov J.B.3, Ustinova A.Yu.1
Abstract

We analyzed the level of HSP70 and hydrogen peroxide in 7-day-old seedlings of Amaranthus caudatus L. in control and after short-term high and low temperature stresses. HSP70 was identified strongly activated in control and its active synthesis was shown after short-term temperature stress (2 hours, +40° C). The level of HSP70 after short-term cold stress (2 hours, +4° C) practically did not change. It was shown that concentration of hydrogen peroxide in 7-day-old seedlings of Amaranthus caudatus increased after short-term temperature stresses. The response to the heat stress was much stronger that to the cold one. The possible role of hydrogen peroxide as a component of nonspecific stress-reaction system of the plant is discussed. HSP70 synthesis and accumulation of hydrogen peroxide after short-term heat stress correlate with thermotolerance of Amaranthus caudatus. Our results support that hydrogen peroxide molecules act as signaling agents. They activate HSP70 synthesis which protects plant from the high temperature stress.

Keywords: Amaranthus caudatus, heat shock protein, hydrogen peroxide, temperature stresses, thermotolerance

Full text: PDF (Ukr) 933K

References
  1. Bienert G.P., Moller A.L., Kristiansen K.A., Schulz A. et al. Jour. Biol. Chem., 2007, 139, pp. 1183–1192. https://doi.org/10.1074/jbc.M603761200
  2. Cheeseman J.M. Jour. Exp. Bot., 2006, 57(10): 2435–2444. https://doi.org/10.1093/jxb/erl004
  3. Cho E.K., Hong C.B. Plant Cell Rep., 2006, 25, pp. 349–358. https://doi.org/10.1007/s00299-005-0093-2
  4. Cui S., Huang F., Wang J. et al. Proteomics, 2005, 5, pp. 3162–3172. https://doi.org/10.1002/pmic.200401148
  5. Hashimoto M., Komatsu S. Proteomics, 2007, 7, pp. 1293–1302. https://doi.org/10.1002/pmic.200600921
  6. Ireland H.E., Harding S.J., Bonwick G.A., Jones M., Smith C.J., Williams J.H.H. Biomarkers, 2004, 9, pp. 139–155. https://doi.org/10.1080/13547500410001732610
  7. Jaspers P., Kangasjarvi J. Physiol. Plant., 2010, 138, pp. 405–413. https://doi.org/10.1111/j.1399-3054.2009.01321.x
  8. Kolupaev Yu.E., Karpets Yu.V. Formirovanie adaptivnykh reaktsiy rasteniy na deystvie abioticheskikh stressov, Kiev: Osnova, 2010, 352 p.
  9. Kosakivska I.V. Fiziol. i biokhim. kult. rast. 2012, 44(5): 1–10.
  10. Kotak S., Larkindale J., Lee U., von Koskull-Doring P., Vierling E., Scharf K.D. Curr. Opin. Plant Biol., 2007, 10, pp. 310–316. https://doi.org/10.1016/j.pbi.2007.04.011
  11. Kozeko L.Ye., Artemenko O.A., Zaslavskyi V.A., Didukh A.Ya., Rakhmetov D.B., Martynyuk H.M., Didukh Ya.P., Kordyum Ye.L. Ukr. botan. zhurn., 2011, 68(6): 890–900.
  12. Kreslavskiy V.D., Los D.A. Fiziol. rast., 2012, 59(2): 163–178.
  13. Lee D.G., Ahsan N., Lee S.H., Kang K.Y., Bahk J.D., Lee I.J. et al. Proteomics, 2007, 7, pp. 3369–3383. https://doi.org/10.1002/pmic.200700266
  14. Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. Trends Plant Sci., 2004, 9, pp. 490–498. https://doi.org/10.1016/j.tplants.2004.08.009
  15. Mubarakshina M.M., Ivanov B.N., Naidov I.A., Hiller W. et al. Jour. Exp. Bot., 2010, 61, pp. 3577–3587. https://doi.org/10.1093/jxb/erq171
  16. Nehretskiy V.A., Kovzun E.I. Dop. NAN Ukrainy, 2004, 10: 174–177.
  17. Neill S.J., Desikan R., Clarke A., Hurst R.D., Hancock J.T. Jour. Exp. Bot., 2002, 53(372): 1237–1274. https://doi.org/10.1093/jexbot/53.372.1237
  18. Noreen Z., Ashraf M. Jour. Plant Physiol., 2009, 166: 1764–1774. https://doi.org/10.1016/j.jplph.2009.05.005
  19. Orvar B.L., Sangwan V., Omann F., Dhindsa R.S. Plant Jour., 2000, 23, pp. 785–794. https://doi.org/10.1046/j.1365-313x.2000.00845.x
  20. Plotnikova L.Ia. Fiziol. rast., 2009, 56 (3): 200–209.
  21. Suzuki N., Mittler R. Physiol. Plant., 2006, 126, pp. 45–51. https://doi.org/10.1111/j.0031-9317.2005.00582.x
  22. Swindell W.R., Weber A.P. BMC Genomics., 2007, 8, pp. 125–131. https://doi.org/10.1186/1471-2164-8-125
  23. Timperio A.M., Egidi M.G., Zolla L. J. Proteom., 2008, 71, pp. 391–411. https://doi.org/10.1016/j.jprot.2008.07.005
  24. Torres M.A., Dangl J.L. Curr. Opin. Plant Biol., 2005, 8, pp. 397–403. https://doi.org/10.1016/j.pbi.2005.05.014
  25. Torres N.L., Cho K., Shibato J. et al. Electrophoresis, 2007, 28, pp. 4369–4381. https://doi.org/10.1002/elps.200700219