Ukr. Bot. J. 2013, 70(4): 552–556 https://doi.org/10.15407/ukrbotj70.04.552Plant Physiology, Biochemistry, Cell and Molecular Biology
Effect of short-term temperature stresses on HSP70 synthesis and level of hydrogen peroxide in Amaranthus caudatus L. seedlings
Kosakivska I.V.1, Negretsky V.A.1, Pushkarev V.M.2, Konturska O.A.1, Rakhmetov J.B.3, Ustinova A.Yu.1- 1 M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine
- 2, Tereshchenkivska Str., Kyiv, 01601, Ukraine
- 2 V.P. Komisarenko Institute of Endocrinology and Metabolism, National Academy of Medical Sciences of Ukraine
- 69, Vyshhorodska, Str., Kyiv, 04114, Ukraine
- 3 M.M. Gryshko National Botanical Garden, National Academy of Sciences of Ukraine
- 1, Timiryazyevska Str., Kyiv, 01014, Ukraine
Abstract
We analyzed the level of HSP70 and hydrogen peroxide in 7-day-old seedlings of Amaranthus caudatus L. in control and after short-term high and low temperature stresses. HSP70 was identified strongly activated in control and its active synthesis was shown after short-term temperature stress (2 hours, +40° C). The level of HSP70 after short-term cold stress (2 hours, +4° C) practically did not change. It was shown that concentration of hydrogen peroxide in 7-day-old seedlings of Amaranthus caudatus increased after short-term temperature stresses. The response to the heat stress was much stronger that to the cold one. The possible role of hydrogen peroxide as a component of nonspecific stress-reaction system of the plant is discussed. HSP70 synthesis and accumulation of hydrogen peroxide after short-term heat stress correlate with thermotolerance of Amaranthus caudatus. Our results support that hydrogen peroxide molecules act as signaling agents. They activate HSP70 synthesis which protects plant from the high temperature stress.
Keywords: Amaranthus caudatus, heat shock protein, hydrogen peroxide, temperature stresses, thermotolerance
Full text: PDF (Ukr) 933K
References
- Bienert G.P., Moller A.L., Kristiansen K.A., Schulz A. et al. Jour. Biol. Chem., 2007, 139, pp. 1183–1192. https://doi.org/10.1074/jbc.M603761200
- Cheeseman J.M. Jour. Exp. Bot., 2006, 57(10): 2435–2444. https://doi.org/10.1093/jxb/erl004
- Cho E.K., Hong C.B. Plant Cell Rep., 2006, 25, pp. 349–358. https://doi.org/10.1007/s00299-005-0093-2
- Cui S., Huang F., Wang J. et al. Proteomics, 2005, 5, pp. 3162–3172. https://doi.org/10.1002/pmic.200401148
- Hashimoto M., Komatsu S. Proteomics, 2007, 7, pp. 1293–1302. https://doi.org/10.1002/pmic.200600921
- Ireland H.E., Harding S.J., Bonwick G.A., Jones M., Smith C.J., Williams J.H.H. Biomarkers, 2004, 9, pp. 139–155. https://doi.org/10.1080/13547500410001732610
- Jaspers P., Kangasjarvi J. Physiol. Plant., 2010, 138, pp. 405–413. https://doi.org/10.1111/j.1399-3054.2009.01321.x
- Kolupaev Yu.E., Karpets Yu.V. Formirovanie adaptivnykh reaktsiy rasteniy na deystvie abioticheskikh stressov, Kiev: Osnova, 2010, 352 p.
- Kosakivska I.V. Fiziol. i biokhim. kult. rast. 2012, 44(5): 1–10.
- Kotak S., Larkindale J., Lee U., von Koskull-Doring P., Vierling E., Scharf K.D. Curr. Opin. Plant Biol., 2007, 10, pp. 310–316. https://doi.org/10.1016/j.pbi.2007.04.011
- Kozeko L.Ye., Artemenko O.A., Zaslavskyi V.A., Didukh A.Ya., Rakhmetov D.B., Martynyuk H.M., Didukh Ya.P., Kordyum Ye.L. Ukr. botan. zhurn., 2011, 68(6): 890–900.
- Kreslavskiy V.D., Los D.A. Fiziol. rast., 2012, 59(2): 163–178.
- Lee D.G., Ahsan N., Lee S.H., Kang K.Y., Bahk J.D., Lee I.J. et al. Proteomics, 2007, 7, pp. 3369–3383. https://doi.org/10.1002/pmic.200700266
- Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. Trends Plant Sci., 2004, 9, pp. 490–498. https://doi.org/10.1016/j.tplants.2004.08.009
- Mubarakshina M.M., Ivanov B.N., Naidov I.A., Hiller W. et al. Jour. Exp. Bot., 2010, 61, pp. 3577–3587. https://doi.org/10.1093/jxb/erq171
- Nehretskiy V.A., Kovzun E.I. Dop. NAN Ukrainy, 2004, 10: 174–177.
- Neill S.J., Desikan R., Clarke A., Hurst R.D., Hancock J.T. Jour. Exp. Bot., 2002, 53(372): 1237–1274. https://doi.org/10.1093/jexbot/53.372.1237
- Noreen Z., Ashraf M. Jour. Plant Physiol., 2009, 166: 1764–1774. https://doi.org/10.1016/j.jplph.2009.05.005
- Orvar B.L., Sangwan V., Omann F., Dhindsa R.S. Plant Jour., 2000, 23, pp. 785–794. https://doi.org/10.1046/j.1365-313x.2000.00845.x
- Plotnikova L.Ia. Fiziol. rast., 2009, 56 (3): 200–209.
- Suzuki N., Mittler R. Physiol. Plant., 2006, 126, pp. 45–51. https://doi.org/10.1111/j.0031-9317.2005.00582.x
- Swindell W.R., Weber A.P. BMC Genomics., 2007, 8, pp. 125–131. https://doi.org/10.1186/1471-2164-8-125
- Timperio A.M., Egidi M.G., Zolla L. J. Proteom., 2008, 71, pp. 391–411. https://doi.org/10.1016/j.jprot.2008.07.005
- Torres M.A., Dangl J.L. Curr. Opin. Plant Biol., 2005, 8, pp. 397–403. https://doi.org/10.1016/j.pbi.2005.05.014
- Torres N.L., Cho K., Shibato J. et al. Electrophoresis, 2007, 28, pp. 4369–4381. https://doi.org/10.1002/elps.200700219