ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 6 of 6
Ukr. Bot. J. 2020, 77(2): 117–124
Biotechnology, Physiology and Biochemistry

Influence of cultivation conditions on biomass and endopolysaccharide production by species of the genus Ganoderma (Ganodermataceae)

Boromenskyi D.O., Bisko N.A.

Influence of liquid static and submerged cultivation conditions on production of biomass and endopolysaccharides in the mycelia of ten strains of seven species of the genus Ganoderma from the Mushroom Culture Collection (IBK) was investigated. The selected strains were cultivated in a liquid glucose-peptone-yeast medium for 14 days. For biomass production, submerged cultivation was more advantageous, as compared to liquid static cultivation, for all studied strains except G. oregonense 2560. Effect of the submerged cultivation method on the content of polysaccharides in the mycelium was demonstrated only for four investigated strains of Ganoderma (G. tsugae 2566, 2024 and G. resinaceum 2503, 2477). The strain G. oregonense 2560 contained the highest percentage of endopolysaccharides in the mycelium (8.2%) obtained using the method of liquid static cultivation. The highest mycelium biomass was produced in liquid static culture by the strains G. resinaceum 2477, 2503 (9.4 g/l), G. oregonense 2560 (9.3 g/l), and G. applanatum 1899 (9.0 g/l). The highest biomass value (20.7 g/l) and the highest yield of endopolysaccharides (1.58 g/l) were obtained in mycelium of G. tsugae 2024 in submerged culture. For G. tsugae and G. resinaceum, a strain specificity in endopolysaccharides content under submerged and static liquid cultivation was established. Data on the production of biomass and endopolysaccharides by the studied strains of G. carnosum and G. oregonense were obtained for the first time.

Keywords: Ganoderma oregonense, Ganoderma carnosum, Ganoderma sinense, liquid static cultivation, submerged cultivation

Full text: PDF (Ukr) 1.08M

  1. Al-Maali G.A. 2016. The influence of the metal citrates, obtained using aquananotechnology, on the biology of Ganoderma lucidum (Curtis) P.Karst. and Trametes versicolor (L.) Lloyd. in culture: Cand. Sci. Diss. Kyiv, M.G. Kholodny Institute of Botany NAS of Ukraine, 185 pp. (manuscript).
  2. Al-Maali G.A., Bisko N.A., Ostapchuk A.N. 2016. The effect of zinc citrate and zinc sulfate on the growth and biomass composition of medicinal mushroom Ganoderma lucidum. Mikologiya i Fitopatologiya, 50(5): 313–317.
  3. Babitskaya V.G., Shcerba V.V., Puchkova T.A., Smirnov D.A., Bisko N.A., Poedinok N.L. 2007. Biotechnologia, 6: 34–41.
  4. Belova N.V. 2016. Advances in Biology & Earth Sciences, 1(1): 111–114.
  5. Bisko N.A., Babitskaya V.G., Buchalo A.S., Krupodorova T.A., Lomberg M.L., Mychaylova O.B., Puchkova T.A., Solomko E.F., Shcherba V.V. 2012. Biological properties of medicinal macromycetes in pure culture), vol. 2. Ed. S.P. Wasser. Kiev: Alterpress, 459 pp.
  6. Bisko N.A., Lomberg M.L., Mytropolska N.Yu., Mychaylova O.B. 2016. Kolektsiya kultur shapynkovykh hrybiv (IBK) (The IBK Mushroom Culture Collection). Kyiv: Alterpress, 120 pp.
  7. Boh B., Berovic M., Zhang J.-S., Lin Z.-B. 2007. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnology Annual Review, 13: 265–267.
  8. Boromenskyi D.O., Bisko N.A. 2019. Micromorphological features of species of Ganoderma (Ganodermataceae) in pure culture. Ukrainian Botanical Journal, 76(6): 486–492.
  9. Buchalo A.S., Babitskaya V.G., Bisko N.A., Wasser S.P., Dudka I.A., Mitopolskaya N.Yu., Mykchaylova O.B., Negreyko A.M., Poyedinok N.L., Solomko E.F. 2011. Biological properties of medicinal macromycetes in pure culture, vol. 1. Ed. S.P. Wasser. Kiev: Alterpress, 212 pp.
  10. Ferreira I.C.F.R., Heleno S.A., Reis F.S., Stojkovic D., Queiroz M.J.R.P., Vasconcelos M.H., Sokovic M. 2015. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry, 114: 38–55. https://doi:10.1016/j.phytochem.2014.10.011
  11. Lee W.Y., Park Y., Ahn J.K., Ka K.H., Park S.Y. 2007. Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum. Enzyme and Microbial Technology, 40(2): 249–254. https://doi:10.1016/j.enzmictec.2006.04.009
  12. Leung S.W.S. 2002. In: Perspectives. Proceedings of International Symposium on Ganoderma Research. Shanghai, pp. 1–9.
  13. Mizuno T., Wang G., Zhang J., Kawagishi H., Nishitoba T., Li J. 1995. Reishi, Ganoderma lucidum and Ganoderma tsugae: bioactive substances and medicinal effects. Food Reviews International, 11(1): 151–166.
  14. Vedenicheva N.P., Al-Maali G.A., Bisko N.A., Mytropolska N.Yu. 2018. Comparative analysis of cytokinins in mycelial biomass of medicinal mushrooms. International Journal of Medicinal Mushrooms, 20(9): 837–847.
  15. Wagner R., Mitchell D.A., Sassaki G.L., Lopes de Almeida Amazonas M.A., Berovič M. 2003. Current techniques for the cultivation of Ganoderma lucidum for the production of biomass, ganoderic acid and polysaccharides. Food Technology and Biotechnology, 41(4): 371–382.
  16. Wasser S.P. 2010. Medicinal mushrooms science: history, current status, future trends and unsolved problems. International Journal of Medicinal Mushrooms, 12(1): 1–16.
  17. Wasser S.P. 2014. Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biomedical Journal, 37(6): 345–356.
  18. Wei Z., Duan Y., Qian Y., Guo X., Li Y., Jin S., Zhou X., Shan S., Wang C. Chen X., Zheng Y., Zhong J. 2014. Screening of Ganoderma strains with high polysaccharides and ganoderic acid contents and optimization of the fermentation medium by statistical methods. Bioprocess and Biosystems Engineering, 37(9): 1789–1797.