ISSN 2415-8860 (Online), ISSN 0372-4123 (Print)
logoUkrainian Botanical Journal
  • 8 of 10
Ukr. Bot. J. 2018, 75(6): 564–575
Plant Physiology, Biochemistry, Cell and Molecular Biology

DNA extraction from old herbarium material of Veronica subgen. Pseudolysimachium (Plantaginaceae)

Höpke J.1, Brewer G.2, Dodsworth S.2,3, Ortiz E.M.4, Albach D.C.1

Herbarium specimens have become a major source of information in molecular biodiversity research, framing the term "herbarium genomics". However, obtaining good DNA from old herbarium specimens is still a challenge. Currently, DNA extraction methods from old herbarium material often yield highly degraded and fragmented DNA. A number of studies have discussed such methods, especially how to avoid further DNA fragmentation. This study aims to compare different DNA extraction methods applied to old herbarium material from Veronica subg. Pseudolysimachium. One such method is a CTABbased DNA extraction followed by a clean-up with paramagnetic beads that is used in the Jodrell Laboratory, Royal Botanic Gardens Kew, UK. This method was compared to a modified NucleoSpin Plant II protocol, based on silica columns, as used at the Technical University Munich-Freising, which was already successfully used for extracting DNA from a Linnean type specimen. Further tests were conducted on the influence of incubation time on the CTAB DNA extraction protocol with a subsample of specimens. Our preliminary results suggest that CTAB DNA extraction might have some advantages in specific cases but also that silica column-based methods have fewer problems with contamination by polysaccharides and polyphenolic compounds. Regarding the incubation time, we did not observe a clear pattern, but we developed several ideas on how to proceed with tests to find an optimal DNA extraction protocol to deal with highly fragmented DNA. Taking practical considerations into account, the column-based method proves to be preferable, especially when trying to reduce the amount of leaf tissue used, but further modifications of both methods should be explored.

Supplementary Material. Electronic Supplement (Table E1, p. e3) is available in the online version of this article below.

Keywords: Veronica subg. Pseudolysimachium, herbarium specimens, DNA extraction methods, molecular biodiversity research

Full text: PDF (Eng) 2.09M

  1. Albach D.C., Chase M.W. Paraphyly of Veronica (Veroniceae; Scrophulariaceae): Evidence from the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Journal of Plant Research, 2001, 114: 9–18.
  2. Anonymous. MinElute® Handbook. Hilden, Germany: Qiagen GmbH, 2008, 48 pp.
  3. Anonymous. 260/280 and 260/230 Ratios. T042-Technical Bulletin Nano Drop Spectrophotometers. Wilmington, Delaware, USA: Thermo Scientific, 2013, 2 pp.
  4. Arthofer W., Avtzis D.N., Riegler M., Stauffer C. Mitochondrial phylogenies in the light of pseudogenes and Wolbachia: reassessment of a bark beetle dataset. ZooKeys, 2010, 58: 269–280.
  5. Blair C., Campbell C.R., Yoder A.D. Assessing the utility of whole genome amplified DNA for next-generation molecular ecology. Molecular Ecology Resources, 2015, 15: 1079–1090.
  6. Carr S.M., Griffith O.M. Rapid isolation of animal mitochondrial DNA in a small fixed-angle rotor at ultrahigh speed. Biochemical Genetics, 1987, 25: 385–390.
  7. Choi J., Lee H., Shipunov A. All that is gold does not glitter? Age, taxonomy, and ancient plant DNA quality. PeerJ, 2015, 3: e1087.
  8. Chomicki G., Renner S.S. Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics. New Phytologist, 2015, 205: 526–532.
  9. Dabney J., Knapp M., Glocke I., Gansauge M.-T., Weihmann A., Nickel B., Valdiosera C., García N., Pääbo S., Arsuaga J.-L. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proceedings of the National Academy of Sciences, 2013, 110(39): 15758–15763.
  10. DeAngelis M.M., Wang D.G., Hawkins T.L. Solidphase reversible immobilization for the isolation of PCR products. Nucleic Acids Research, 1995, 23(22): 4742–4743.
  11. Dodsworth S. Genome skimming for next-generation biodiversity analysis. Trends in Plant Science, 2015, 20: 525–527.
  12. Dormann C.F., Kühn I. Angewandte Statistik für die biologischen Wissenschaften. 2nd ed. Leipzig: Helmholtz Zentrum für Umweltforschung-UFZ, 2009, 223 pp.
  13. Doyle J.J. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 13–15.
  14. Doyle J.J., Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 1987, 19: 11–15.
  15. Drábková L., J. Kirschner, Vlček C. Comparison of seven DNA extraction and amplification protocols in historical herbarium specimens of Juncaceae. Plant Molecular Biology Reporter, 2002, 20: 161–175.
  16. Dunn O.J. Multiple comparisons using rank sums. Technometrics, 1964, 6: 241–252.
  17. Dwivedi M.D., Barfield S., Pandey A.K., Schaefer H. Phylogeny of Zehneria (Cucurbitaceae) with special focus on Asia. Taxon, 2018, 67: 55–65.
  18. Höpke J., Albach D.C. CTAB vs. column-based DNA extraction from old herbarium material. Visnyk of Lviv University. Ser. Biol., 2018, 78: 14–19.
  19. Kenyon L., Lebas B., Seal S. Yams (Dioscorea spp.) from the South Pacific Islands contain many novel badnaviruses: implications for international movement of yam germplasm. Archives of Virology, 2008, 153: 877–889.
  20. Kistler L. Ancient DNA Extraction from Plants. In: Ancient DNA: Methods and Protocols. B. Shapiro, M. Hofreiter. Totowa, NJ: Humana Press, 2012, pp. 71–79.
  21. Klokov M.V. De Veronicis spicatis. In: Novosti sistematiki vysshikh i nizshikh rastenii (Kiev), [published in] 1976, [vol. of] 1975: 92–111.
  22. Knapp M., Clarke A.C., Horsburgh K.A., MatisooSmith E.A. Setting the stage–Building and working in an ancient DNA laboratory. Annals of Anatomy-Anatomischer Anzeiger, 2012, 194: 3–6.
  23. Lage J.M., Leamon J.H., Pejovic T., Hamann S., Lacey M., Dillon D., Segraves R., Vossbrinck B., González A., Pinkel D. Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array–CGH. Genome Research, 2003, 13: 294–307.
  24. Lasken R.S. Genomic DNA amplification by the multiple displacement amplification (MDA) method. Biochemical Society Transactions, 2009, 37: 450–453.
  25. Li J., Harris L., Mamon H., Kulke M.H., Liu W.-H., Zhu P., Makrigiorgos G.M. Whole genome amplification of plasma-circulating DNA enables expanded screening for allelic imbalance in plasma. The Journal of Molecular Diagnostics, 2006, 8: 22–30.
  26. Lovmar L., Syvänen A.C. Multiple displacement amplification to create a long-lasting source of DNA for genetic studies. Human Mutation, 2006, 27: 603–614.
  27. Maciejewska A., Jakubowska J., Pawłowski R. Whole genome amplification of degraded and nondegraded DNA for forensic purposes. International Journal of Legal Medicine, 2013, 127: 309–319.
  28. Meyer M., Kircher M., Gansauge M.-T., Li H., Racimo F., Mallick S., Schraiber J.G., Jay F., Prüfer K., De Filippo C. A high-coverage genome sequence from an archaic Denisovan individual. Science, 2012, 338: 222–226.
  29. Ostapko V.M. On veronicas of Donbass. In: Introduktsiya I akklimatizatsiya rasteniy (Kiev), 1985, 3: 18–25.
  30. Ostapko V.M. New species of Galium L. (Rubiaceae) and Veronica L. (Scrophulariaceae) from the Ukraine´s South-East. Ukrayins'kyi Botanichnyi Zhurnal (Ukrainian Botanical Journal), 1994, 51(2/3): 84–91.
  31. Ostapko V.M. New nomenclatural combinations and a new name in Pseudolysimachion (Plantaginaceae s. l. = Veronicaceae s. str.) and Phlomoides (Lamiaceae): taxa occurring in Ukraine. Ukrainian Botanical Journal, 2014, 71: 673–675.
  32. Ostapko V.M., Boiko G.V., Mosyakin S.L. Vascular plants of the Southeast of Ukraine. Donetsk: Knowledge Publ., 2010, 247 pp.
  33. Rogers S.O., Bendich A.J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology, 1985, 5: 69–76.
  34. Rohland N., Hofreiter M. Comparison and optimization of ancient DNA extraction. BioTechniques, 2007, 42: 343–352.
  35. Schaefer H., Heibl C., Renner S.S. Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proceedings of the Royal Society of London B: Biological Sciences, 2009, 276: 843–851.
  36. Shepherd L.D. A non-destructive DNA sampling technique for herbarium specimens. PLoS ONE, 2017, 12: e0183555.
  37. Staats M., Cuenca A., Richardson J.E., Vrielink-van Ginkel R., Petersen G., Seberg O., Bakker F.T. DNA damage in plant herbarium tissue. PLoS ONE, 2011, 6: e28448.
  38. Turaki A., Ahmad B., Magaji U., Abdulrazak U., Yusuf B., Hamza A. Optimised cetyltrimethylammonium bromide (CTAB) DNA extraction method of plant leaf with high polysaccharide and polyphenolic compounds for downstream reliable molecular analyses. African Journal of Biotechnology, 2017, 16: 1354–1365.
  39. Tzvelev N.N. Veronicas (Veronica L.) of the affinity of V. spicata L. and some problems of the phylogenesis of the genus. Byulleten Moskovskogo Obshchestva Ispytatelei Prirody. Otdel Biol., 1981, 86(6): 82–92.
  40. Wang G., Maher E., Brennan C., Chin L., Leo C., Kaur M., Zhu P., Rook M., Wolfe J.L., Makrigiorgos G.M. DNA amplification method tolerant to sample degradation. Genome Research, 2004, 14: 2357–2366.
  41. Záveská Drábková L. DNA extraction from herbarium specimens. In: Molecular Plant Taxonomy. P. Besse. Totowa, NJ: Humana Press, 2014, pp. 69–84.