ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 3 of 9
Ukr. Bot. J. 2017, 74(2): 131–147
Fungi and Fungi-like Organisms

Main trends of evolution of fruit bodies in agaricomycetes, with special reference to coprinoidization

Prydiuk M.P.

Modern views on existing trends in evolution of agaricomycetes fruit bodies are summarized. The well-known evolutionary trends of basidial mushrooms, gasteromycetization and cyphellization, are outlined. Special attention is paid to coprinoidization, a recently recognized trend of evolution of agaricoid mushrooms. The coprinoidization, an ability of fruit bodies for accelerated ontogeny, which independently evolved in several evolutionary lines of fungi of the order Agaricales (families Agaricaceae, Bolbitiaceae and Psathyrellaceae), is a way of adaptation of basidial macromycetes to extreme conditions. It enables them to colonize substrates with considerably fluctuating water content. The most noticeable common feature of coprinoid fruit bodies is their fast autolysis or collapse after sporogenesis. The main morphological changes which make possible such a mode of adaptation as well as its advantages and preferences are considered. It is shown that this way of evolutionary adaptation is the most advantageous for fimicolous macromycetes but is also beneficial for mushrooms growing on other types of substrata. The present data about origin of the first coprinoid taxa of fungi and time of their origin are considered. The presumable connection with expansion of dry open grasslands followed by evolutionary radiation and diversification of large grazing mammals during the Miocene is indicated.

Keywords: coprinoidization, fruit bodies morphology, autolysis, evolution

Full text: PDF (Ukr) 2.94M

  1. Agerer R. Lachnella-Crinipellis, Stigmatolemma-Fistulina: zwei Verwandschaftsreihen? Z. Mykol., 1978, 44: 51–70.
  2. Baura G., Szaro T.M., Bruns T.D. Gastrosuillus laricinus is a recent derivative of Suillus grevillei: molecular evidence. Mycologia, 1992, 84(4): 592–597.
  3. Berbee M.L., Taylor J.W. Dating the evolutionary radiations of the true fungi. Can. J. Bot., 1993, 71: 1114–1127.
  4. Binder M., Bresinsky A. Derivation of a polymorphic lineage of Gasteromycetes from boletoid ancestors. Mycologia, 2002, 94: 85–98.
  5. Binder M., Hibbett D.S., Larsson K.H., Larsson E., Langer E., Langer G. The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Syst. Biodiv., 2005, 3: 113–157.
  6. Binder M., Hibbett D.S., Molitoris H.P. Phylogenetic relationships of the marine gasteromycete Nia vibrissa. Mycologia, 2001, 93(4): 679–688.
  7. Bodensteiner P., Binder M., Moncalvo J.M., Agerer R., Hibbett D.S., Phylogenetic relationships of cyphelloid homobasidiomycetes. Mol. Phylogen. Evol., 2004, 33: 501–515.
  8. Bruns T.D., Szaro T.M., Gardes M., Cullings K.W., Pan J.J., Taylor D.L., Horton D.R., Kretzer A., Garbelotto M., Li Y. A sequence database for the identification of ectomycorrhizal basidiomycetes by phylogenetic analysis. Mol. Ecol., 1998, 7: 257–272.
  9. Clémençon H. Cytology and Plectology of the Hymenomycetes, Stuttgart: J. Cramer, 2004, 488 pp.
  10. Didukh Ya.P., Romashchenko K.Y., Futorna O.A. Ukr. Bot. J., 2016, 73(1): 21–32.
  11. Donk M.A. Notes on ‘Cyphellaceae’. I. Persoonia, 1959, 1: 25–110.
  12. Donk M.A. A conspectus of the families of the Aphyllophorales. Persoonia, 1964, 3: 199–324.
  13. Donk M.A. Progress in the study of the classification of higher basidiomycetes. In: Evolution in the higher basidiomycetes. Ed. R.H. Petersen, Knoxville: Univ. Tenessee Press, 1971, pp. 3–25.
  14. Fries N. Untersuchungen über Sporenkeimung und Mycelentwiklung bodenbewohnender Hymenomyceten. Symb. Bot. Upsal., 1943, 6: 1–81.
  15. Garnica S., Weiss M., Walther G., Oberwinkler F. Reconstructing the evolution of agarics from nuclear gene sequences and basidiospore ultrastructure. Mycol. Res., 2007, 111: 1019–1029.
  16. Hallen H.E., Watling R., Adams G.C. Taxonomy and toxicity of Conocybe lactea and related species. Mycol. Res., 2003, 107(8): 969–979.
  17. Hibbett D.S. Trends in morphological evolution in homobasidiomycetes inferred using maximum likelihood: a comparison of binary and multistate approaches. Syst. Biol., 2004, 53: 889–903.
  18. Hibbett D.S. After the gold rush, or before the flood? Evolutionary morphology of mushroom-forming fungi (Agaricomycetes) in the early 21st century. Mycol. Res., 2007, 111: 1001–1018.
  19. Hibbett D.S., Binder M. Evolution of complex fruiting-body morphologies in homobasidiomycetes. Proc. Biol. Sci., 2002, 269: 1963–1969.
  20. Hibbett D.S., Grimaldi D., Donoghue M.J. Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of homobasidiomycetes. Amer. J. Bot., 1997a, 84: 981–991.
  21. Hibbett D.S., Pine E.M., Langer E., Langer G., Donoghue M.J. Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proc. Natl. Acad. Sci. USA, 1997b, 94: 12002–12006.
  22. Hibbett D.S., Thorn R.G. Basidiomycota: Homobasidiomycetes. In: Mycota. Systematics and evolution. Eds D.J. McLauhlin, E.G. McLauhlin, P.A. Lemke, Berlin: Springer Verlag, 2001, vol. 7, pp. 121–168.
  23. Hopple J.S.Jr., Vilgalys R. Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent domains, outgroups, and monophyly. Mol. Phylogen. Evol., 1999, 13: 1–19.
  24. Janis C.M., Damuth J., Theodor J.M. Miocene ungulates and terrestrial primary productivity: where have all the browsers gone? Proc. Natl Acad. Sci. USA, 2000, 97: 7899–7904.
  25. Johnson J. Phylogenetic relationships within Lepiota sensu lato based on morphological and molecular data. Mycologia, 1999, 91(3): 443–458.
  26. Kües U. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microb. Mol. Biol. Rev., 2000, 64: 316–353.
  27. Kühner R. Les Hyménomycètes agaricoides (Agaricales, Tricholomatales, Pluteales, Russulales). Bull. Soc. Linn. Lyon., 1980, Num. spéc. 49: 1–1027.
  28. Larsson K.H., Larsson E., Kõljalg U. High phylogenetic diversity among corticioid homobasidiomycetes. Mycol. Res., 2004, 108: 983–1002.
  29. Matheny P.B., Curtis J.M., Hofstetter V., Aime M.C., Moncalvo J.M., Ge Z.W., Yang Z.L., Slot J.C., Ammirati J.F., Baroni T.J., Bougher N.L., Hughes K.W., Lodge D.J., Kerrigan R.W., Seidl M.T., Aanen D.K., DeNitis M., Daniele G.M., Desjardin D.E., Kropp B.R., Norvell L.L., Parker A., Vellinga E.C., Vilgalys R., Hibbett D.S. Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia, 2006, 98: 982–995.
  30. Moncalvo J.M., Vilgalys R., Redhead S.A., Johnson J.E., James T.Y. One hundred and seventeen clades of euagarics. Mol. Phylogen. Evol., 2002, 23: 357–400.
  31. Nagy L.G., Házi J., Szappanos B.B., Koscubé S., Bálint B., Rákhely G., Vágvölgyi C., Papp T. The evolution of defense mechanisms correlate with the explosive diversification of autodigesting Coprinellus mushrooms (Agaricales, Fungi). Systematic Biology Advance Access, 2012, vol. 61, 13 pp., available at: (accessed 31 January 2012).
  32. Nagy L.G., Koscubé S., Papp T., Vágvölgyi C. Phylogeny and character evolution of the coprinoid mushroom genus Parasola as inferred from LSU and ITS nrDNA sequence data. Persoonia, 2009, 22: 28–37.
  33. Nagy L.G., Urban A., Örstadius L., Papp T., Larsson E., Vágvölgyi C. The evolution of autodigestion in the mushroom family Psathyrellaceae (Agaricales) inferred from Maximum Likelihood and Bayesian methods. Mol. Phylogenet. Evol., 2010, 57: 1037–1048.
  34. Nagy G.L., Walther G., Házi J., Vágvölgyi C., Papp T. Understanding the evolutionary processes of fungal fruiting bodies: correlated evolution and divergence times in the Psathyrellaceae. Syst. Biol., 2011, 60(3): 303–317.
  35. Oberwinkler F. The significance of the morphology of the basidium in the phylogeny of basidiomycetes. In: Basidium and Basidiocarp. Eds K. Wells, E.K. Wells, New York: Springer Verlag, 1982, pp. 9–35.
  36. Padamsee M., Matheny P.B., Dentinger B.T.M., McLaughlin D.J. The mushroom family Psathyrellaceae: Evidence for large-scale polyphyly of the genus Psathyrella. Mol. Phylogen. and Evol., 2008, 46: 415–429.
  37. Peintner U., Bougher N.L., Castellano M.A., Moncalvo J.M., Moser M.M., Trappe J.M., Vilgalys R. Multiple origins of sequestrate fungi related to Cortinarius (Cortinariaceae). Amer. J. Bot., 2001, 88: 2168–2179.
  38. Poinar G.O., Singer R. Upper Eocene gilled mushroom from the Dominican Republic. Science, 1990, 248: 1099–1101.
  39. Redhead S.A., Vilgalys R., Moncalvo J.M., Johnson J., Hopple J.S. Coprinus Persoon and the disposition of Coprinus species sensu lato. Taxon, 2001, 50: 203–241.
  40. Singer R. The Agaricales in modern taxonomy, Konigstein: Koeltz Sci. Books, 1986, 981 pp.
  41. Sussman A.S. Longevity and survivility of fungi. In: The Fungi. An Advanced Treatise. Eds G.C. Ainsworth, A.S. Sussman, New York: Acad. Press, 1968, vol. 3, pp. 447–486.
  42. Thiers H.D. The secotioid syndrome. Mycologia, 1984, 76: 1–8.
  43. Tóth A., Hausknecht A., Krisai-Greilhuber I., Papp T., Vágvölgyi C., Nagy L.G. Iteratively refined guide trees help improving alignment and phylogenetic inference in the mushroom family Bolbitiaceae. PLoS ONE, 2013, 8(2): 1–14.
  44. Watling R. Germination of basidiospores and production of fructifications of members of the agaric family Bolbitiaceae using herbarium material. Nature, 1963, 197: 717–718.
  45. Zmitrovich I.V., Wasser S.P. Modern view on the origin and phylogenetic reconstruction of homobasidiomycetes fungi. In: Evolutionary theory and processes: modern horizons, papers in honour of Eviatar Nevo. Ed. S.P. Wasser, Kluwer: Kluwer Acad. Publ., 2004, pp. 231–263.