ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 8 of 11
Ukr. Bot. J. 2015, 72(6): 588–595
Plant Physiology, Biochemistry, Cell and Molecular Biology

Branching of Ceratodon purpureus protonemata effected under altered gravity conditions

Khorkavtsiv Y.D.1, Kordyum E.L.2, Lobachevska O.V.1, Kyyak N.Y.1, Kit N.A.1

The results of studying the gravisensitivity of protonemata branches in Ceratodon purpureus (Brid.) Hedw. moss, a setpoint angle of which changed depending on a gravity vector and a gradient of auxin distribution, are presented. The suppression of auxin polar transport under the N 1 naphthyl-phthalamic acid (NPA) action caused the counteraction against gravity up to plagiotropic growth of lateral branches. A nucleus plays an active role in protonemata branching; its migration to the new growth area accelerated by the polarizing of gravity. It was established that coordination of growth and division processes were disrupted by gravity, but proliferative activity did not change. A local activation of microtubules preceded to the initiation of branching. MTs surrounded the nucleus during its migration, realizing the signaling and transport functions.

Keywords: auxin, setpoint angle, lateral branch, gravisensitivity, nucleus, microtubule

Full text: PDF (Ukr) 1.03M

  1. Chazotte B. Cold Spring Garbor Protoc., 2011, pp. 80–83.
  2. Chebli Y., Geitmann A. Plant science, 2011, 2: 1–10.
  3. Cove D., Bezanilla M., Harries Ph., Quatrano R. Ann. Rev. Plant Biol., 2006, 57: 497–520.
  4. Cuming A.C. Mosses as Model Organisms for Development, Cellular and Molecular Biology. In: Bryophyte Biology. Eds B. Goffinet, A.J. Shaw, 2nd edn., Cambridge: Cambridge Univer. Press, 2009, pp. 199–236.
  5. Demkiv O.T., Khorkavtsiv Ya.D., Pundiak O.I. Cell Biol. Int., 2003, 27: 187–189.
  6. Demkiv O.T., Khorkavtsiv Ya.D., Pundiak O.I. Hravitatsiya yak formotvorchyi faktor rozvytku mokhiv. In: Fiziolohiya roslyn: problemy ta perspektyvy rozvytku. Ed. V.V. Morhun, Kyiv: Logos, 2009, 2: 403–408.
  7. Goodwin B. Analiticheskaya fiziologiya kletok i razvivayushchikhsya organizmov, Moscow: Mir, 1979, 287 pp.
  8. Goodwin B.C. Analytic Physiology of cells and developing organisms, London: Academic Press, 1979, 287 pp.
  9. Herranz R., Medina F.J. Plant Biology, 2014, 16: 23–30.
  10. Khorkavtsiv Ya.D., Demkiv O.T. Kosm. nauka i technol., 2003, 9(2/3): 77–82.
  11. Khorkavtsiv Ya.D., Kyyak N.Ya., Kit N.A. In: Hravichutlyvist v ontohenezi mokhiv: materially 14 ukr. konf. z kosmichnykh doslidzhen', Kyiv, 2014, p. 71.
  12. Kordyum E.L. Plant Biology, 2014, 16(1): 79–90.
  13. Kordyum E.L., Shevchenko G.V., Kalinina I.M., Demkiv O.T., Khorkavtsiv Ya.D. The role of the cytoskeleton in plant cell gravisensitivity. In: The plant cytoskeleton: a key tool for agro biotechnology. Eds Y.B. Blume, W.V. Baird, A.I. Yemets, D. Breviario, Berlin: Springer, 2009, pp. 173–196.
  14. Matia I., González-Camacho F., Herranz R., Kiss J.Z., Gasset G., Loon J., Marco R., Medina F.J. J. of Plant Physiol., 2010, 167: 184–193.
  15. Micco V.De., Pascale S.De., Paradiso R., Aronne G. Plant Biology, 2014, 16: 31–38.
  16. Nick P. The Plant J., 2013, 75: 309–323.
  17. Paul A.-L., Amalfitano C.E., Ferl R.J. Plant Biology, 2012, 12: 2–14.
  18. Pundiak O.I., Demkiv O.T., Khorkavtsiv Ya.D., Bahrii B.B., Kosm. nauka i technol., 2002, 8(1): 96–100.
  19. Roux S.J., Chatterjee A., Hillier S., Cannon T. Advances in Space Reseach., 2003, 31: 215–220.
  20. Roychoudhry S., Bianco M.D., Kieffer M., Kepinski S. Current Biology, 2013, 23: 1497–1504.
  21. Schwuchow J., Sack F.D. Protoplasma, 1990, 159: 60–69.
  22. Schwuchow J.M., Kern V.D., White N.J., Sack F.D. J. Plant Growth Regul., 2002, 21: 146–155.