The nectarless orchid, *Steveniella satyrioides* (Spreng.) Schltr., occurs in the mountain part of the Crimean Peninsula; it is known from 26 localities 10 of which were found during the last 50 years. Pollination ecology of the species was studied in Ayan Natural Landmark (Simferopol District). From 1 to 55 individuals of this species flowered here in different years; one year there was no flowering plants. The pollination rate of *S. satyrioides* varies from 16% to 79% and positively correlates with the density of specialized pollinators — females of diplopterous wasps of genera *Vespula* Thomson, 1869, and *Dolichovespula* Rohwer, 1916. A probable mechanism of attraction of wasps by flowers of *S. satyrioides* and its evolution are discussed.

Materials and methods

Pollination ecology of *S. satyrioides* was studied in 2004—2011 in Ayan Natural Landmark (vicinity of the Ayan Reservoir near the village of Perevalnoye, Simferopol District, Crimean Foothills), 44°49′56″ N, 34°18′05″ E, 470 m above sea level. Each year we counted the number of flowering specimens of *S. satyrioides* growing in this territory and estimated the comparative density of potential pollinators — social wasps of the family Vespidae. The wasp density was studied by the itinerary method; we recorded all wasp specimens discovered in the studied area during several hours once a week in sunny weather. At the end of the blossoming period of *S. satyrioides* we calculated the average density of wasps per hour.

At the end of the blossoming period we also checked all the flowers from all plants found in the sample and recorded 9 conditions of them: «0» — both hemipollinarium present, stigma without massulae; «1» — both hemipollinarium absent, stigma without massulae; «2» — both hemipollinarium absent, stigma with massulae in both right and left sides; «3» — only one hemipollinarium present, stigma with massulae in both right and left sides; «4» — both hemipollinarium present, stigma with massulae in both right and left sides; «5» — only one hemipollinarium present, stigma without massulae; «6» — both hemipollinarium absent, stigma with massulae only in one side; «7» — only one hemipollinarium present, stigma with massulae only in one side and «8» — both hemipollinarium present, stigma with massulae only in one side. The first condition, «0» corresponds to non-visited flowers and conditions «1» and «2» cor-
respond to the flowers visited once (first flowers visited by a pollinator in certain site). Other conditions («2»—«4» and «6»—«8») correspond to the pollinated flowers. Pollinated flowers without hemipollinaria («2» and «6») demonstrate persistent behavior of the pollinator during the flower visits, and pollinated flowers with both hemipollinaria («4» and «8») indicate that the visits were not persistent [5].

On the base of the obtained data we counted the rate of the pollinated flowers and the rate of the flowers visited by pollinators once. Then we estimated the index of the flower visit repetition by means of dividing the amount rate of pollinated flowers by the amount of the flowers visited once [4, 16]. This index is approximately equal to the mean number of the flowers visited by a pollinator after its visit of the first flower.

Distribution of *Steveniella satyrioides* in the Crimea was studied on the base of data from 5 herbaria (55 specimens): National Herbarium of Ukraine, Kiev (KW) — 3 specimens; Herbarium of Nikita Botanical Garden — National Science Center, Yalta (YALT) — 33 specimens; Herbarium of V.I. Vernadsky Tavrida National University, Simferopol (SIMF) — 4 specimens; Herbarium of National University of Life and Environmental Sciences of Ukraine, Southern Branch «Crimean Agrotechnological University», Simferopol (CSAU) — 2 specimens, and Herbarium of V.L. Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg (LE) — 13 specimens. We also examined the photos of this species deposited on the website «Plantarium» (http://www.plantarium.ru/).

Distribution of *Steveniella satyrioides* in the Crimea

The points where *S. satyrioides* has been recorded in the Crimea are represented on the map (fig. 1). The species grows only in the mountain part of the peninsula where it is known from 26 localities. Among them, there are 16 points where plants of *S. satyrioides* were recorded more than 50 years ago; 10 records are made during the last 50 years, including 7 points confirmed by herbarium specimens; 2 points are added on the base of the photos from «Plantarium», and 1 point (Ayan Natural Landmark) — according to our investigations. Predomination of all

Fig. 1. Distribution of *Steveniella satyrioides* in the Crimea: 1 — Ayan Natural Landmark, where the species was studied; 2 — points where the species was collected earlier than 50 years ago (according to herbaria); 3 — points where the species was collected during the last 50 years (according to herbaria); 4 — points where the species was recorded according to the photos on “Plantarium”; 5 — point where the species is known only from the article of I.V. Vankov [1].
Fig. 2. *Steveniella satyrioides* in Ayan Natural Landmark: a—c — habitat sites; d—e — flowering plants; f—h — inflorescences; i — head of the female of *Vespula germanica* (Fabricius, 1793) with two hemipollinaria, frontal view.
records of *S. satyrioides* made more than 50 years ago makes an impression of decreasing of the species abundance here. More probably there was more intensive collecting in the first half of the 20th century. Thus, the changes in the population abundance of *S. satyrioides* require further investigations.

Description of the population in Ayan Natural Landmark

Steveniella satyrioides grows in Ayan Natural Landmark on the area about 0.75 hectares in 3 localities, each of 100—200 square meters. In the localities studied, three associations were revealed: *Filipenduleto* (vulgaris) — *Primuletum* (acaulis) caricosum (michelli) with flowering *Orchis purpurrea* Huds. (coverage — 60—70 %, grass height — 10—20 cm) (fig. 2, a); *Inuleto* (asperi) — *Gallietum* (rubioidis) festucosum (rupicolae) (projective cover — 90—100 %, grass height — 20—30 cm) (fig. 2, b), and *Brachypodieto* (pinnati) — *Inuletum* (asperi) filipendulosum (vulgaris) (coverage — 100%, grass height — 15—25 cm) (fig. 2, c).

Number of the flowering plants of *S. satyrioides* varied greatly on the studied territory in different years. In 2006 we did not find any plant, in 2008 there was only 1 plant, and in other years the number of plants was 12 to 55 (tab. 1). These data show that the population dynamics of the species is not simple and requires continuing monitoring. In addition, plants of *S. satyrioides* vary in helmet’s coloration, from limy green to reddish brown (fig. 2, d—h).

Flower visitors

Four species of the social wasps from the family Vespidae, subfamily Vespinae was recorded in the territory studied in 2004—2011; among them, 3 species were recorded as flower visitors and pollinators of *S. satyrioides*: *V. germanica*, *V. vulgaris* and *D. sylvestris*. The fourth species, *Vespula* (*Vespula* rufa) (Linnaeus, 1758), has not been recorded on the flowers but it is obvious that it also can take part in the pollination process. The flowering period of *S. satyrioides* in Ayan Natural Landmark continues from the beginning of May to the middle of June [4]. At this time only «queens» (overwintered females) of the social wasps can occur [10]. Thus, only females of the listed species were visiting flowers of *S. satyrioides*, not workers as it was reported by V.V. Nazarov [20].

The density of wasp females also varied considerably in different years (tab. 1). During four seasons (2004, 2006, 2008 and 2011) the populations of wasps were abundant but in the other four ones (2005, 2007, 2009, 2010) the wasps occurred very rarely. The density of pollinators does not correlate with the abundance of flowering plants of *S. satyrioides*: in 4 years when wasps were abundant, the number of orchids could be both high and very low (tab. 1). Fifty-eight wasp females were collected: 3 *V. germanica*, 33 *V. vulgaris*, 17 *V. rufa*, and 5 *D. sylvestris*; among them, 6 specimens were collected directly on flowers and 52 — in flight. Only 1 female of *V. germanica* collected in flight carried the orchid hemipollinaria on its clypeus (fig. 2, i).

Pollination effectiveness

There were 16 % to 79 % pollinated flowers of *S. satyrioides* in different years (tab. 1). According to data from the table, two pollination effectiveness indexes (rate of the pollinated flowers and repetition of the flower visits) strongly correlate positively with the density of po-

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of flowering plants in the studied area</th>
<th>Number of plants / flowers in the sample</th>
<th>Rate of the flowers visited once, %</th>
<th>Repetition of flower visits by pollinators</th>
<th>Rate of the pollinated flowers, %</th>
<th>Average density of social wasps per hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>17</td>
<td>17 / 172</td>
<td>19.2</td>
<td>4.05</td>
<td>77.8</td>
<td>6.6 ± 2.3</td>
</tr>
<tr>
<td>2005</td>
<td>12</td>
<td>12 / 123</td>
<td>43.9</td>
<td>0.80</td>
<td>35.0</td>
<td><0.1</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.0 ± 1.1</td>
</tr>
<tr>
<td>2007</td>
<td>55</td>
<td>20 / 265</td>
<td>30.6</td>
<td>0.53</td>
<td>16.2</td>
<td><0.1</td>
</tr>
<tr>
<td>2008</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.8 ± 1.2</td>
</tr>
<tr>
<td>2009</td>
<td>32</td>
<td>28 / 310</td>
<td>37.1</td>
<td>1.13</td>
<td>41.9</td>
<td><0.1</td>
</tr>
<tr>
<td>2010</td>
<td>20</td>
<td>20 / 262</td>
<td>29.4</td>
<td>1.04</td>
<td>30.5</td>
<td><0.1</td>
</tr>
<tr>
<td>2011</td>
<td>52</td>
<td>37 / 443</td>
<td>26.0</td>
<td>2.37</td>
<td>61.6</td>
<td>1.2 ± 0.6</td>
</tr>
</tbody>
</table>
Potential pollinators — wasp females. The third index (rate of the flowers visited once) negatively correlates with the wasp density. These data confirm that the wasp females are specialized pollinators of *S. satyrioides*. Additional confirmation of this conclusion can be obtained from the diagrams where the rates of flowers with different conditions are represented (fig. 3). Independently of the rate of pollinated flowers, the flowers with condition «1» predominate among non-pollinated flowers, and the flowers with condition «2» and «6» — among pollinated ones. These facts allow to suppose that the visits of flowers by pollinators were persistent and tended to the retrieving both hemipollinaria. When the density of wasps is abundant, most of flowers lose their hemipollinaria very early. This hypothesis can explain the fact that most wasps that visited the flowers left them without hemipollinaria.

Each year from 1/5 to 1/3 of the plants were wound by the spider’s web of *Dictyna arundinacea* (Linnaeus, 1758) (Aranei, Dictynidae). These plants had low pollination rate and have not been included in the analysis of pollination effectiveness.

Thus, females of the social wasps of the family Vespidae, subfamily Vespinae are effective and obviously the only possible pollinators of *S. satyrioides* in our area. The main determinant of the pollination effectiveness of the species is wasp abundance, which greatly varies in different years but in general is not very low as compared to specialized pollinators of other orchids because of high ecological flexibility of these wasps and synanthropic character of most species.

Discussion

Wasps of the family Vespidae are not usual pollinators of orchids (especially nectarless ones). Among their six subfamilies, Eumeninae (potter wasps), Polistinae (paper wasps) and Vespinae (hornets and yellowjackets) are most common in the Northern Hemisphere. Potter wasps of the genus *Eumenes* Laterille, 1802 were recorded as the specialized pollinators of nectar-rewarding

![Fig. 3. Rate of flowers of Steveniella satyrioides of different conditions visited by pollinators in Ayan Natural Landmark in different years: a — 2007; b — 2009; c — 2010; d — 2011](image-url)
species *Epipactis palustris* (L.) Crantz (section *Arthrochilium* Irmisch) [21]. Yellowjackets (the genera *Vespa* Thomson, 1869 and *Dolichovespula* Rohwer, 1916) were recorded as specialized pollinators of nectar-rewarding species of the genus *Epipactis* Zinn, section *Epipactis* [17, 18] and nectar-rewarding orchid *Coelogynae fimbrirata* Lindl. [15]. Only one known nectarless orchid, except *S. satyrioides*, *Dendrobium sinense* Tang & F.T. Wang, is pollinated by a wasp of the family Vespidae, the hornet species *Vespa bicolor* Fabricius, 1787 [14]. Flowers of these orchids attract the hornet foragers by the imitation of the scent of their preys — honeybee workers (*Apis mellifera* Linnaeus, 1758 and *Apis cerana* Fabricius, 1793). However, imitation of the scent of wasp preys also occurs in nectar-rewarding species, *Epipactis helleborine* (L.) Crantz [13]. All listed species are pollinated by the wasp workers, thus the pollination of *S. satyrioides* by overwintered females of the wasps is unique among all wasp-pollinating orchids.

The wasp females are very effective pollinators of *S. satyrioides*: this species has significantly higher reproductive success values in comparison to other orchids studied in the Crimea [20]. So, the low number of wasp species of orchids have already finished their flowering.

Flowers of these orchids usually fall on July — September [10] when most of insects, in this case by bees of the genus *Megachile* Latreille, 1802 (Hymenoptera, Megachilidae) [16]. We can suppose that it also have a special olfactory attractant which can attract only several morphologically and ethologically suitable pollinators.

Thus, *S. satyrioides* is a highly specialized orchid species in respect of its pollination ecology. The measures intended for its conservation must also include conservation of its pollinators; however, the actual situation with them in the Crimea gives no reason for concern.

Acknowledgements

Authors express their gratitude to A.A. Nadolny for identification of spiders, A.V. Yena for providing certain references, and S.L. Mosyakin for editing and comments.

REFERENCES

Безнектарна орхідея *Steveniella satyrioides* (Spreng.) Schltr. поширина в Криму в межах гірської частини півострова та відома з 26 локалітетів, 10 з яких представлено знахідками, зробленими в останні 50 років. Вивчення екології запилення виду в урочищі Аян (Симферопольський р-н). У різні роки тут цього виду було від 1 до 55 екземплярів даного вида, в один з років — жоден. Рівень запилення *S. satyrioides* коливається від 16 до 79 % і позитивно корелює зі щільністю спеціалізованих запилювачів — самок складчастокрилих ос роду *Vespula* Thomson, 1869 і *Dolichovespula* Rohwer, 1916. Обговорюється можливий механізм залучення ос на квітки та його еволюційне становлення.

Ключові слова: *Steveniella satyrioides*, поширення, запилення, запилювачі, *Vespidae*, Крим.

A.V. Фатерыга1, 2, С.П. Іванов1, 2, В.В. Фатерыга1

1 Карадагський природний заповідник НАН України, г. Феодосія, Україна
2 Таврійський національний університет імені В.І. Вернадського, м. Сімферополь, Україна

ЕКОЛОГІЯ ОПЫЛЕННЯ

STEFENIELLA SATYRIOIDES (SPRENG.) SCHLTR. (ORCHIDACEAE) В УРОЧИЩІ АЯН (КРІМ)

Безнектарна орхідея *Steveniella satyrioides* (Spreng.) Schltr. поширина в Криму в межах гірської частини півострова та відома з 26 локалітетів, 10 з яких представлено знахідками, зробленими в останні 50 років. Вивчення екології запилення виду в урочищі Аян (Симферопольський р-н). У різні роки тут цього виду було від 1 до 55 екземплярів даного вида, в один з років — жоден. Рівень запилення *S. satyrioides* коливається від 16 до 79 % і позитивно корелює зі щільністю спеціалізованих запилювачів — самок складчастокрилих ос роду *Vespula* Thomson, 1869 і *Dolichovespula* Rohwer, 1916. Обговорюється можливий механізм залучення ос на квітки та його еволюційне становлення.

Ключові слова: *Steveniella satyrioides*, поширення, запилення, запилювачі, *Vespidae*, Крим.