ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 9 of 9
Up
Ukr. Bot. J. 2025, 82(5): 488–501
https://doi.org/10.15407/ukrbotj82.05.488
Vegetation Science, Ecology, Conservation

Initial stages of revegetation at the bottom of the drained Kakhovka Reservoir (Ukraine): synthesis of field surveys and remote sensing

Kuzemko A.A. 1,2,3, Prylutskyi O.V. 3, Kolomytsev G.O. 2,4, Didukh Ya.P. 1, Moysiyenko I.I. 3,5,6, Borsukevych L.M. 7, Chusova O.O. 1,2, Khodosovtsev O.Ye. 3,5,6
Abstract

On June 6, 2023, the dam of the Kakhovka Hydroelectric Power Plant was intentionally demolished by Russian troops, who detonated pre-deployed explosives, causing an environmental catastrophe in the Northern Black Sea region. Despite the severe environmental and socioeconomic repercussions, the disaster offered unique opportunities to study vegetation development in the long-flooded but now exposed area. The aim of the present study was to reveal and demonstrate the initial stages of formation of the flora and vegetation in the area of the former Kakhovka Reservoir, combining field research data (flora and vegetation surveys and observations, etc.) and remote sensing techniques (calculation of vegetation indices, supervised machine learning classification, etc.). We visited the area in June and October 2023 and in May 2024; during these visits we georeferenced and outlined various habitat types. These field data were used for geospatial modeling. Our studies found that the number of taxa of vascular plants in the area increased nearly 14 times during the year, thus contradicting initial pessimistic predictions and scenarios of desertification, ruderalization, and large-scale invasions of invasive alien species. We identified main types of newly formed terrestrial habitats, including willow and poplar thickets, marshy habitats, mud-, sand- and shell-covered areas with sparse vegetation. Remote sensing methods, augmented by machine learning techniques, complemented these findings, providing detailed habitat maps for the entire reservoir bed. This study contributes to our understanding of ecological successions and habitat dynamics in post-catastrophic landscapes, informing future management strategies for such areas.

Supplementary Material. Fig. S1 and Tables S1–S3 are available on this website: ukrbotj82-05-488-S1.pdf

Keywords: dam breach, floodplain, habitats, machine learning, restoration, vegetation

Full text: PDF (Eng) 2.43M

References
  1. Acker S.A., Beechie T.J., Shafroth P.B. 2008. Effects of a natural dam-break flood on geomorphology and vegetation on the Elwha River, Washington, U.S.A. Northwest Science, 82(sp1): 210–223. https://doi.org/10.3955/0029-344X-82.S.I.210
  2. American Rivers. 2019–onward. American Rivers Dam Removal Database. Dataset, version 12, posted on 2025-03-03. https://doi.org/10.6084/m9.figshare.5234068.v12
  3. Auble G.T., Shafroth P.B., Scott M.L., Roelle J.E. 2007. Early vegetation development on an exposed reservoir: Implications for dam removal. Environmental Management, 39(6): 806–818. https://doi.org/10.1007/s00267-006-0018-z
  4. Bednarek A.T. 2001. Undamming rivers: a review of the ecological impacts of dam removal. Environmental Management, 27: 803–814. https://doi.org/10.1007/s002670010189
  5. Belyaeva I. 2009. Nomenclature of Salix fragilis L. and a new species, S. euxina (Salicaceae). Taxon, 58: 1344–1348. https://doi.org/10.1002/tax.584021
  6. Climate-Data.org. 2025–onward. Ukraine climate: Ukraine climate data and average weather. Available at: https://en.climate-data.org/europe/ukraine-231/ (Accessed 16 October 2025).
  7. Copernicus Sentinel data. European Space Agency. 2023. Available at: https://scihub.copernicus.eu (Accessed 20 May 2024).
  8. Didukh Ya.P., Kuzemko A.A., Khodosovtsev O.Ye., Chusova O.O., Borsukevych L.M., Skobel N.O., Mikhailyuk T.I., Moysiyenko I.I. 2024. First year of floodplain forest restoration at the bottom of the former Kakhovka reservoir. Chornomorski Botanical Journal, 20 (3): 305–326. https://doi.org/10.32999/ksu1990-553X/2024-20-3-5
  9. Dovhanenko D.O., Yakovenko V.M., Brygadyrenko V.V., Boyko O.O. 2024. Characteristic of the dried-up zone formed as a result of the breach of the Kahovka dam. Biosystems Diversity, 32(2): Article 2. https://doi.org/10.15421/012431
  10. Elmes A., Alemohammad H., Avery R., Caylor K., Eastman J.R., Fishgold L., Friedl M.A., Jain M., Kohli D., Laso Bayas J.C., Lunga D., McCarty J.L., Gilmore Pontius R., Reinmann A.B., Rogan J., Song L., Stoynova H., Ye S., Yi Z.-F., Estes L. 2020. Accounting for training data error in machine learning applied to Earth observations. Remote Sensing, 12(6): 1034. https://doi.org/10.3390/rs12061034
  11. EUNIS. 2019. EUNIS habitat type hierarchical view (version 2012). Available at: https://eunis.eea.europa.eu/habitats-code-browser.jsp (Accessed 30 August 2024).
  12. European Commission. 2021. Biodiversity Strategy 2030. Barrier removal for river restoration. Luxembourg: Publications Office of the European Union, 467 pp.
  13. Fassnacht F.E., Latifi H., Stereńczak K., Modzelewska A., Lefsky M., Waser L.T., Straub C., Ghosh A. 2016. Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment, 186: 64–87. https://doi.org/10.1016/j.rse.2016.08.013
  14. Gao B.-C. 1996. NDWI — A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58: 257–266.
  15. Gislason P.O., Benediktsson J.A., Sveinsson J.R. 2006. Random Forests for land cover classification. Pattern Recognition Letters, 27(4): 294–300. https://doi.org/10.1016/j.patrec.2005.08.011
  16. Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  17. Graf W.L. 2003. Dam removal research: status and prospects. Washington, D.C.: The Heinz Center, 34 pp.
  18. Gray D.H., Sotir R.B. 1996. Biotechnical and soil bioengineering slope stabilization. New York: Wiley, 392 pp.
  19. Heohrafichna entsyklopediya Ukrainy [Geographical encyclopaedia of Ukraine]. 1989–1993. Vols 1–3. Ed. O.M. Marynych. Kyiv: Ukrainska Radyanska Entsyklopediya im. M.P. Bazhana.
  20. Ho T.K. 1995. Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition. Montreal: IEEE, pp. 278–282.
  21. Interpretation Manual of European Union Habitats. 2013. European Commission DG Environment Nature and Biodiversity. Nature ENV B.3, 144 pp.
  22. Janssen J.A.M., Rodwell J.S., García Criado M., Gubbay S., Haynes T., Nieto A., Sanders N., Landucci F., Loidi J., Ssymank A., Tahvanainen T., Valderrabano M., Acosta A., Aronsson M., Arts G., Attorre F., Bergmeier E., Bijlsma R.-J., Bioret F., Biţă-Nicolae C., Biurrun I., Calix M., Capelo J., Čarni A., Chytrý M., Dengler J., Dimopoulos P., Essl F., Gardfjell H., Gigante D., Giusso del Galdo G., Hájek M., Jansen F., Jansen J., Kapfer J., Mickolajczak A., Molina J.A., Molnár Z., Paternoster D., Piernik A., Poulin B., Renaux B., Schaminée J.H.J., Šumberová K., Toivonen H., Tonteri T., Tsiripidis I., Tzonev R., Valachovič M. 2016. Red list of European habitats: 2. Terrestrial and freshwater habitats. Brussels: European Commission, 87 pp.
  23. Johansson B., Sellberg B. (eds). 2006. Dams under debate. Stockholm: Swedish Research Council Formas [The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning], 114 pp. Available at: https://formas.se/download/18.462d60ec167c69393b91df97/1549956093520/Dams_under_debate.pdf
  24. Kennedy E.V., Roelfsema C.M., Lyons M.B., Kovacs E.M., Borrego-Acevedo R., Roe M., Phinn S.R., Larsen K., Murray N.J., Yuwono D., Wolff J., Tudman P. 2021. Reef Cover, a coral reef classification for global habitat mapping from remote sensing. Scientific Data, 8(1): 196. https://doi.org/10.1038/s41597-021-00958-z
  25. Khodosovtsev A., Darmostuk V., Prylutskyi O., Kuzemko A. 2022. Silicicolous lichen communities of the Ukrainian Crystalline Shield. Applied Vegetation Science, 25: e12699. https://doi.org/10.1111/avsc.12699
  26. Khodosovtsev O.Ye., Moysiyenko I.I., Kuzemko A.A., Kravchenko O.V., Polyanska K.V., Didukh Ya.P., Harbar O.V., Baran S.I., Melen-Zabramna O.M., Khodosovtseva Yu.A., Pelykh O.L., Skoryk S.V. 2025. National Nature Park "Kamianska Sich": War Against Nature. Lviv: Manuscript Company Publishing House, 184 pp.
  27. Klang-Westin E., Eriksson J. 2003. Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant and Soil, 249: 127–137. https://doi.org/10.1023/A:1022585404481
  28. Lenhart C.F. 2003. A preliminary review of NOAA’s community-based dam removal and fish passage projects. Coastal Management, 31: 79–89. https://doi.org/10.1080/08920750390168318
  29. Lisovets O., Podorozhniy S., Tutova H., Molozhon K., Kunakh O., Zhukov O. 2025. Hemeroby reveals the dynamics of vegetation cover following the destruction of the Kakhovka Reservoir. PeerJ, 13: e19607. https://doi.org/10.7717/peerj.19607
  30. Marchenko A.M., Kuzovkina Y.A. 2022. Notes on the nomenclature and taxonomy of Salix fragilis (Salicaceae). Taxon, 71(4): 721–732. https://doi.org/10.1002/tax.12685
  31. Mohsin M., Kaipiainen E., Salam M., Evstishenkov N., Nawrot N., Villa A., Wojciechowska E., Kuittinen S., Pappinen A. 2021. Biomass production and removal of nitrogen and phosphorus from processed municipal wastewater by Salix schwerinii: A field trial. Water, 13: 2298. https://doi.org/10.3390/w13162298
  32. Myroniuk V., Kutia M., Sarkissian J., Bilous A., Liu S. 2020. Regional-scale forest mapping over fragmented landscapes using global forest products and Landsat time series classification. Remote Sensing, 12(1): 187. https://doi.org/10.3390/rs12010187
  33. Naddaf M. 2023. Ukraine dam collapse: what scientists are watching. Nature, 618: 440–441. https://doi.org/10.1038/d41586-023-01928-8
  34. National Habitat Catalogue of Ukraine. 2018. Eds A.A. Kuzemko, Ya.P. Didukh, V.A. Onyschenko, Ya. Sheffer. Kyiv: FOP Klymenko Yu.Ya., 442 pp.
  35. Peterson A.A., DeMatteo K.E., Michaelides R.J., Braude S., Templeton A.R. 2025. Time series analysis of vegetation recovery after the Taum Sauk Dam failure. Remote Sensing, 17(9): 1605. https://doi.org/10.3390/rs17091605
  36. Pettorelli N., Vik J.O., Mysterud A., Gaillard J.-M., Tucker C.J., Stenseth N.C. 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9): 503–510.
  37. Pichura V., Potravka L., Boiko P. 2025. Climatic and hydrological conditions for the formation of vegetation cover in the drained Kakhovka reservoir’s territory. Ecological Engineering & Environmental Technology, 26(4): 357–373. https://doi.org/10.12912/27197050/202227
  38. Poff N.L., Allan J.D., Bain M.B., Karr J.R., Prestegaard K.L., Richter B.D., Sparks R.E., Stromberg J.C. 1997. The natural flow regime. BioScience, 47: 769–784. https://doi.org/10.2307/1313099
  39. POWO. 2025–onward. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available at: https://www.plantsoftheworldonline.org (Accessed 28 August 2024).
  40. Prach K., Chenoweth J., del Moral R. 2019. Spontaneous and assisted restoration of vegetation on the bottom of a former water reservoir, the Elwha River, Olympic National Park, WA, USA. Restoration Ecology, 27(3): 592–599. https://doi.org/10.1111/rec.12915
  41. QGIS.org. 2024. QGIS Geographic Information System. QGIS Association. Available at: https://www.qgis.org (Accessed 20 May 2024).
  42. Revised Annex I to Resolution No. 4 (1996) of the Bern Convention on endangered natural habitat types using the EUNIS habitat classification (Adopted by the Standing Committee on 6 December 2019). 2019. Available at: https://search.coe.int/bern-convention/Pages/result_details.aspx?ObjectId=09000016807469e7 (Accessed 16 June 2024).
  43. Rogers A.S., Kearney M.S. 2004. Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices. International Journal of Remote Sensing, 25(12): 2317–2335.
  44. Schaminée J.H.J., Chytrý M., Hennekens S.M., Janssen J.A.M., Knollová I., Rodwell J.S., Tichý L. 2018. Updated crosswalk of the revised EUNIS habitat classification with the European vegetation classification and indicator species for the EUNIS grassland, shrubland and forest types. Copenhagen: European Environment Agency, 104 pp.
  45. Schleiss A.J., Boes R.M. (eds). 2011. Dams and reservoirs under changing challenges. Leiden, The Netherlands: CRC Press/Balkema, an imprint of the Taylor & Francis Group, xviii + 887 pp.
  46. Shafroth P.B., Perry L.G., Helfield J.M., Chenoweth J., Brown R.L. 2024. Vegetation responses to large dam removal on the Elwha River, Washington, USA. Frontiers in Ecology and Evolution, 12: 1272921. https://doi.org/10.3389/fevo.2024.1272921
  47. Shumilova O., Sukhodolov A., Osadcha N., Oreshchenko A., Constantinescu G., Afanasyev S., Koken M., Osadchyi V., Rhoads B., Tockner K., Monaghan M.T., Schröder B., Nabyvanets J., Wolter C., Lietytska O., van de Koppel J., Magas N., Jähnig S.C., Lakisova V., Trokhymenko G., Venohr M., Komorin V., Stepanenko S., Khilchevskyi V., Domisch S., Blettler M., Gleick P., De Meester L., Grossart H.-P. 2025. Environmental effects of the Kakhovka Dam destruction by warfare in Ukraine. Science, 387(6739): 1181–1186. https://doi.org/10.1126/science.adn8655
  48. Stalažs A. 2024. How changes in plant taxonomy are reflected in practice, the case of Salix alba, S. euxina and S. ×fragilis complex: An example of Latvia’s official normative documents. Proceedings of the Latvian Academy of Sciences Section B Natural Exact and Applied Sciences, Section B, 78(3): 228–232. https://doi.org/10.2478/prolas-2024-0031
  49. Stanley E.H., Doyle M.W. 2003. Trading off: the ecological effects of dam removal. Frontiers in Ecology and Environment, 1(1): 15–22. https://doi.org/10.1890/1540-9295(2003)001[0015:TOTEEO]2.0.CO;2
  50. Stone R. 2024. Laid to waste. Ukrainian scientists are tallying the grave environmental consequences of the Kakhovka dam disaster. Science, 383: 18–23. https://doi.org/10.1126/science.zbde496
  51. Thompson W. 1998. Botanical remedies. Landscape Architect, 8: 38–43.
  52. UNEP. 2023. Rapid environmental assessment of Kakhovka Dam breach; Ukraine. Nairobi, Kenya: United Nations Environment Programme (UNEP), xiii + 115 pp. Available at: https://wedocs.unep.org/bitstream/handle/20.500.11822/43696/Kakhovka_Dam_Breach_Ukraine_Assessment.pdf
  53. Vasyliuk O.V., Kuzemko A.A., Shapoval V.V. 2024. Habitats of the Dnipro River valley before the creation and after the disappearance of the Kakhovka Reservoir. The Biosphere Reserve “Askania-Nova” Reports, 26: 57–67. https://doi.org/10.53904/1682-2374/2024-26/4
  54. Vervaeke P., Luyssaert S., Mertens J., Meers E., Tack F.M.G., Lust N. 2003. Phytoremediation prospects of willow stand on contaminated sediment: A field trial. Environmental Pollution, 126: 275–282. https://doi.org/10.1016/S0269-7491(03)00189-1
  55. Vyshnevskyi V., Shevchuk S., Komorin V., Oleynik Y., Gleick P. 2023. The destruction of the Kakhovka Dam and its consequences. Water International, 48: 631–647. https://doi.org/10.1080/02508060.2023.2247679
  56. Vyshnevskyi V.I., Shevchuk S.A. 2024. Natural processes in the area of the former Kakhovske Reservoir after the destruction of the Kakhovka HPP. Journal of Landscape Ecology, 17(2): 147–164. https://doi.org/10.2478/jlecol-2024-0014
  57. Xie Y., Sha Z., Yu M. 2008. Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology, 1: 9–23. https://doi.org/10.1093/jpe/rtm005