ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 1 of 9
Up
Ukr. Bot. J. 2025, 82(5): 387–397
https://doi.org/10.15407/ukrbotj82.05.387
General Issues, Reviews and Discussions

High potential of biosynthesized nanoparticles as an efficient and inexpensive tool for SERS-detection of explosives based on trinitrotoluene

Smirnov O.E. 1,2, Dzhagan V.M. 3, Mazur N.V. 3, Dzhagan V.V. 1, Taran N.Yu. 1, Schwartau V.V. 2
Abstract

This review is focused on overcoming the consequences of the ruscist invasion in Ukraine and exploring solutions to the problem of contamination by explosives, such as 2,4,6-trinitrotoluene (TNT). Recognizing the need to protect the civilian and military population, it is most important to develop a simple, rapid, and sensitive detection method that first responders can use in the field to identify the TNT threats to the environment or human safety. Surface-enhanced Raman spectroscopy (SERS) is regarded as a novel detection method with high sensitivity, high specificity, and rapid response, which has been successfully applied to the biochemical detection of toxic analytes or environmental pollutants. Green, in particular plant- and fungi-mediated, synthesized metallic nanoparticles are capable of enhancing the SERS signal from various substances, with the ability to register a SERS spectrum from a single target molecule. In general, the method for plant- and fungi-based nanoparticles fabrication is as follows. First, parts of plant or fungal material are selected and crushed to obtain the extract which is processed to remove any impurities. The precursor, typically a metallic solution, is then mixed with the obtained extract, resulting in the production of nanoparticles. Maintaining appropriate pH, temperature, and continuous stirring, which ensures the production of uniformly sized nanoparticles, is crucial to facilitate the reaction effectively. The combination of affordable and sustainable production and high analytical capabilities makes this sort of nanostructure a promising candidate for investigations and decontamination of large territories of Ukraine affected by explosive compounds and products of their decay.

Keywords: green synthesis, localized plasmon resonance, metallic nanoparticles, SERS substrate, trinitrotoluene detection

Full text: PDF (Eng) 1.44M

References
  1. Abdelmigid H.M., Hussien N.A., Alyamani A.A., Morsi M.M., AlSufyani N.M., Kadi H.A. 2022. Green synthesis of zinc oxide nanoparticles using pomegranate fruit peel and solid coffee grounds vs. chemical method of synthesis, with their biocompatibility and antibacterial properties investigation. Molecules, 27(4): 1236. https://doi.org/10.3390/molecules27041236
  2. Alharbi N.S., Alsubhi N.S., Felimban A.I. 2022. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. Journal of Radiation Research and Applied Sciences, 15(3): 109–124. https://doi.org/10.1016/j.jrras.2022.06.012
  3. Alizadeh N., Yoosefian J. 2023. Chemical reduction as a facile colorimetric approach for selective TNT detection by spectrophotometry and photothermal lens spectroscopy. Talanta, 257: 124334. https://doi.org/10.1016/j.talanta.2023.124334
  4. Apak R., Üzer A., Sağlam Ş., Arman A. 2023. Selective electrochemical detection of explosives with nanomaterial based electrodes. Electroanalysis, 35(1): e202200175. https://doi.org/10.1002/elan.202200175
  5. Álvarez-Chimal R., Arenas-Alatorre J.Á. 2023. Green synthesis of nanoparticles. A biological approach. In: Green Chemistry for Environmental Sustainability — Prevention-Assurance-Sustainability (P-A-S) Approach. Ed. K.J. Shah. IntechOpen. https://doi.org/10.5772/intechopen.1002203
  6. Awasthi G., Sharma R., Sundarrajan S., Ramakrishna S., Kumar P. 2022. Progressive trends in hybrid material-based chemiresistive sensors for nitroaromatic compounds. Polymers, 14(21): 4643. https://doi.org/10.3390/polym14214643
  7. Banas A.M., Banas K., Breese M.B. 2023. Classification of the residues after high and low order explosions using machine learning techniques on Fourier Transform Infrared (FTIR) spectra. Molecules, 28(5): 2233. https://doi.org/10.3390/molecules28052233
  8. Bener M., Şen F.B., Apak R. 2022. Protamine gold nanoclusters-based fluorescence turn-on sensor for rapid determination of Trinitrotoluene (TNT). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 279: 121462. https://doi.org/10.1016/j.saa.2022.121462
  9. Borovaya M., Horiunova I., Plokhovska S., Pushkarova N., Blume Y., Yemets A. 2021. Synthesis, properties and bioimaging applications of silver-based quantum dots. International Journal of Molecular Sciences, 22: 12202. https://doi.org/10.3390/ijms222212202
  10. Chegel V.I., Lopatynskyi A.M., Lytvyn V.K., Demydov P.V., Martínez-Pastor J.P., Abargues R., Gadea E.A., Piletsky S.A. 2020. Localized surface plasmon resonance nanochips with molecularly imprinted polymer coating for explosives sensing. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2(4): 431–436. https://doi.org/10.15407/spqeo23.04.431
  11. Chio W.I.K., Peveler W.J., Assaf K.I., Moorthy S., Nau W.M., Parkin I.P., Lee T.C. 2019. Selective detection of nitroexplosives using molecular recognition within self-assembled plasmonic nanojunctions. The Journal of Physical Chemistry C, 123(25): 15769–15776. https://doi.org/10.1021/acs.jpcc.9b02363
  12. Demydov P.V., Lopatynskyi A.M., Hudzenko I.I., Chegel V.I. 2021. The approaches for localized surface plasmon resonance wavelength position tuning. Short review. Semiconductor Physics, Quantum Electronics and Optoelectronics, 24: 304–311. https://doi.org/10.15407/spqeo24.03.304
  13. Devi S., Garg V., Tyagi S. 2022. Amino benzene dicarboxylic acid-derived luminescent nitrogen-doped carbon-quantum dots/anti-TNT antibodies conjugate for detection of nitroaromatic contaminant in water: A comparative analysis of chemo-bio-sensing affinity. Microchemical Journal, 181: 107607. https://doi.org/10.1016/j.microc.2022.107607
  14. Dheyab M., Aziz A., Nowfal S., Braim F., Abdullah W., Kasasbeh W., Oladzadabbasabadi N. 2025. Sustainable green synthesis of silver nanoparticles for safer biomedical application. Journal of Environmental Chemical Engineering, 13(2): 115998. https://doi.org/10.1016/j.jece.2025.115998
  15. Duszyński J., McNutt M., Zagorodny A. 2022. A future for Ukrainian science. Science, 376(6599): 1249–1249. https://doi.org/10.1126/science.add4088
  16. Dzhagan V.M., Pirko Y.V., Buziashvili A.Y., Plokhovska S.G., Borova M.M., Yemets A.I., Yukhymchuk V.O. 2022a. Controlled aggregation of plasmonic nanoparticles to enhance the efficiency of SERS substrates. Ukrainian Journal of Physics, 67: 80–87. https://doi.org/10.15407/ujpe67.1.80
  17. Dzhagan V., Smirnov O., Kovalenko M., Mazu, N., Hreshchuk O., Taran N., Zahn D.R.T. 2022b. Spectroscopic study of phytosynthesized Ag nanoparticles and their activity as SERS substrate. Chemosensors, 10(4): 129. https://doi.org/10.3390/chemosensors10040129
  18. Dzhagan V., Mazur N., Smirnov O., Yeshchenko O., Isaieva O., Kovalenko M., Valakh M. 2023. SERS application of Ag nanoparticles synthesized with aqueous fungi extract. Journal of Nanoparticle Research, 25(3): 37. https://doi.org/10.1007/s11051-023-05683-9
  19. Elsayed M.S., Ahmed I.A., Bader D., Hassan A.F. 2022. Green synthesis of nano zinc oxide/nanohydroxyapatite composites using date palm pits extract and eggshells: adsorption and photocatalytic degradation of methylene blue. Nanomaterials, 12(1): 49. https://doi.org/10.3390/nano12010049
  20. Fagier M.A. 2021. Plant-mediated biosynthesis and photocatalysis activities of zinc oxide nanoparticles: a prospect towards dyes mineralization. Journal of Nanotechnology, 21: 1–15. https://doi.org/10.1155/2021/6629180
  21. Gao R., Qian H., Weng C., Wang X., Xie C., Guo K., Luo L.B. 2020. A SERS stamp: Multiscale coupling effect of silver nanoparticles and highly ordered nano-micro hierarchical substrates for ultrasensitive explosive detection. Sensors and Actuators B: Chemical, 321: 128543. https://doi.org/10.1016/j.snb.2020.128543
  22. Gao W., Wang T., Zhu C., Sha P., Dong P., Wu X. 2022. A ‘sandwich’ structure for highly sensitive detection of TNT based on surface-enhanced Raman scattering. Talanta, 236: 122824. https://doi.org/10.1016/j.talanta.2021.122824
  23. Gong Z., Du H., Cheng F., Wang C., Wang C.-C., Fang M. 2014. Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Applied Materials & Interfaces, 6: 21931–21937. https://doi.org/10.1021/am507424v
  24. Graham D., Goodacre R., Arnolds H. 2017. Theory of SERS enhancement: general discussion. Faraday Discuss, 205: 173–211. https://doi.org/10.1039/C7FD90095C
  25. Habeeb Rahuman H.B., Dhandapani R., Narayanan S., Palanivel V., Paramasivam R., Subbarayalu R., Muthupandian S. 2022. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnology, 16(4): 115–144. https://doi.org/10.1049/nbt2.12078
  26. Hiraoka K., Takaishi R., Ninomiya S., Rankin-Turner S. 2023. Electrospray droplet impact/secondary ion mass spectrometry (EDI/SIMS) applied to the analysis of explosives. International Journal of Mass Spectrometry, 484: 116993. https://doi.org/10.1016/j.ijms.2022.116993
  27. Hu Z., Peng D., Xing F., Wen X., Xie K., Xu X., Fan M. 2023 Iodine-modified Ag NPs for highly sensitive SERS detection of deltamethrin residues on surfaces. Molecules, 28(4): 1700. https://doi.org/10.3390/molecules28041700
  28. Jadoun S., Arif R., Jangid N.K., Meena R.K. 2021. Green synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters, 19: 355–374. https://doi.org/10.1007/s10311-020-01074-x
  29. Jamil A.K., Izake E.L., Sivanesan A., Fredericks P.M. 2015. Rapid detection of TNT in aqueous media by selective label free surface enhanced Raman spectroscopy. Talanta, 134: 732–738. https://doi.org/10.1016/j.talanta.2014.12.022
  30. Johnston E.J., Rylott E.L., Beynon E., Lorenz A., Chechik V., Bruce N.C. 2015. Monodehydroascorbate reductase mediates TNT toxicity in plants. Science, 349(6252): 1072–1075. https://doi.org/10.1126/science.aab3472
  31. Junaid H.M., Waseem M.T., Khan Z.A., Gul H., Yu C. Shaikh A.J., Shahzad S.A. 2022. Fluorescent and colorimetric sensors for selective detection of TNT and TNP explosives in aqueous medium through fluorescence emission enhancement mechanism. Journal of Photochemistry and Photobiology A: Chemistry, 428: 113865. https://doi.org/10.1016/j.jphotochem.2022.113865
  32. Karadurmus L., Bilge S., Sınağ A., Ozkan S.A. 2022. Molecularly imprinted polymer (MIP)-based sensing for detection of explosives: Current perspectives and future applications. TrAC Trends in Analytical Chemistry, 116694. https://doi.org/10.1016/j.trac.2022.116694
  33. Klapec D., Czarnopys, G., Pannuto J. 2023. Interpol review of the analysis and detection of explosives and explosives residues. Forensic Science International: Synergy, 6: 100298. https://doi.org/10.1016/j.fsisyn.2022.100298
  34. Kneipp K., Wang Y., Dasari R.R., Feld M.S., Gilbert B.D., Janni J., Steinfeld J.I. 1995. Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver. Spectrochimica Acta Part A, 51: 2171–2175. https://doi.org/10.1016/0584-8539(95)01474-7
  35. Kondratov I.S., Moroz Y.S., Gorgulla C., Grygorenko O.O., Komarov I.V., Wagner G., Tolmachev A.A. 2022. Challenges for chemistry in Ukraine after the war: Ukrainian science requires rebuilding and support. Proceedings of the National Academy of Sciences, 119(50): e2210686119. https://doi.org/10.1073/pnas.2210686119
  36. Langer J., Jimenez de Aberasturi D., Aizpurua J., Alvarez-Puebla R.A., Auguié B., Baumberg J.J., Bazan G.C., Bell S.E., Boisen A., Brolo A.G., Choo J. et al. 2019. Present and future of surface-enhanced Raman scattering. ACS Nano, 14(1): 28–117. https://doi.org/10.1021/acsnano.9b04224
  37. Larrañaga-Tapia M., Betancourt-Tovar B., Videa M., Antunes-Ricardo M., Cholula-Díaz J.L. 2024. Green synthesis trends and potential applications of bimetallic nanoparticles towards the sustainable development goals 2030. Nanoscale Advances, 6(1): 51–71. https://doi.org/10.1039/D3NA00761H
  38. Li L., Gu H., Lv Y., Zhang Y., He X., Li P. 2022. Ultra-fast polarity switching, non-radioactive drift tube for the miniaturization of drift-time ion mobility spectrometer. Sensors, 22(13): 4866. https://doi.org/10.3390/s22134866
  39. Li X., Zhao X., Xu X., Lu Y., Wu J., Liu F., Lu G. 2023. Excitation orthogonalized upconversion nanoprobe for instant visual detection of trinitrotoluene. Nano Research, 16(1): 1491–1499. https://doi.org/10.1007/s12274-022-4693-8
  40. Liu W., Song Z., Zhao Y., Liu Y., He X., Cui S. 2020. Flexible porous aerogels decorated with Ag nanoparticles as an effective SERS substrate for label-free trace explosives detection. Analytical Methods, 12(33): 4123–4129. https://doi.org/10.1039/D0AY00771D
  41. Llorente V.B., Dzhagan V.M., Gaponik N., Iglesias R.A., Zahn D.R.T., Lesnyak V. 2017. Electrochemical tuning of localized surface plasmon resonance in copper chalcogenide nanocrystals. Journal of Physical Chemistry C, 121: 18244–18253. https://doi.org/10.1021/acs.jpcc.7b05334
  42. Mazur N., Dzhagan V., Kapush O., Isaieva O., Demydov P., Lytvyn V., Yukhymchuk V. 2025. SERS of nitro group compounds for sensing of explosives. RSC Advances, 15(1): 252–260. https://doi.org/10.1039/D4RA07309F
  43. Mata Y.N., Torres E., Blazquez M.L., Ballester A., González F.M.J.A., Munoz J.A. 2009. Gold (III) biosorption and bioreduction with the brown alga Fucus vesiculosus. Journal of Hazardous Materials, 166(2–3): 612–618. https://doi.org/10.1016/j.jhazmat.2008.11.064
  44. Malik K., Kazmi A., Sultana T., Raja N.I., Bibi Y., Abbas M., Badruddin I.A., Ali M.M., Bashir M.N. 2025. A mechanistic overview on green assisted formulation of nanocomposites and their multifunctional role in biomedical applications. Heliyon, 11(3): e41654. https://doi.org/10.1016/j.heliyon.2025.e41654
  45. Meera C.R., Zaynitdinova L., Great U. 2025. Sustainable production of nanoparticles from fungi and their agricultural applications. In: Mohanta Y.K., Mishra B., Pudake R.N. (eds). Nano-microbiology for Sustainable Development. Cham: Springer. https://doi.org/10.1007/978-3-031-78845-1_4
  46. Naveed M., Bukhari B., Aziz T., Zaib S., Mansoor M.A., Khan A.A., Alhomrani M. 2022. Green synthesis of silver nanoparticles using the plant extract of Acer oblongifolium and study of its antibacterial and antiproliferative activity via mathematical approaches. Molecules, 27(13): 4226. https://doi.org/10.3390/molecules27134226
  47. Pandit C., Roy A., Ghotekar S., Khusro A., Islam M.N., Emran T.B., Bradley D.A. 2022. Biological agents for synthesis of nanoparticles and their applications. Journal of King Saud University-Science, 34(3): art. 101869. https://doi.org/10.1016/j.jksus.2022.101869
  48. Rozo J.I.J., Chamoun A.M., Peña S.L., Hernández-Rivera S.P. 2007. Enhanced Raman scattering of TNT on nanoparticle substrates: Ag colloids prepared by reduction with hydroxylamine hydrochloride and sodium citrate. In: Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense VI (9–12 Orlando, Florida, USA).Proceedinds of SPIE. Vol. 6538. Ed. E.M. Carapezza. Bellingham: SPIE, 653824: 487–498. https://doi.org/10.1117/12.746436
  49. Samuel M.S., Ravikumar M., John J.A., Selvarajan E., Patel H., Chander P.S., Chandrasekar N. 2022. A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. Catalysts, 12(5): 459. https://doi.org/10.3390/catal12050459
  50. Secario M., Truong T., Chen C., Lai J., Lue S. 2024. Size-dependent antibacterial efficacy of silver nanoparticles from a green synthesis method: Effects of extract quantity and origin. Journal of the Taiwan Institute of Chemical Engineers, 161: 105511. https://doi.org/10.1016/j.jtice.2024.105511
  51. Silarski M., Nowakowski M. 2022. Performance of the SABAT neutron-based explosives detector integrated with an unmanned ground vehicle: a simulation study. Sensors, 22(24): 9996. https://doi.org/10.3390/s22249996
  52. Smirnov O., Kalynovskyi V., Yumyna Y., Zelena P., Levenets T., Kovalenko M., Dzhagan V., Skoryk M. 2022. Potency of phytosynthesized silver nanoparticles from Lathraea squamaria as anticandidal agent and wheat seeds germination enhancer. Biologia, 77(9): 2715–2724. https://doi.org/10.1007/s11756-022-01117-4
  53. Smirnov O., Dzhagan V., Kovalenko M., Gudymenko O., Dzhagan V., Mazur N., Isaieva O., Maksimenko Z., Kondratenko S., Skoryk M., Yukhymchuk V. 2023a. ZnO and Ag NPs-decorated ZnO nanoflowers: green synthesis using Ganoderma lucidum aqueous extract and characterization. RSC Advances, 13: 756–763. https://doi.org/10.1039/D2RA05834K
  54. Smirnov O., Dzhagan V., Yeshchenko O., Kovalenko M., Vuichyk M., Dzhagan V., Mazur N., Skoryk M., Yukhymchuk V. 2023b. Effect of pH of Ganoderma lucidum aqueous extract on green synthesis of silver nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 14(3): 035009. https://doi.org/10.1088/2043-6262/acebd4
  55. Son C.E., Choi S.S. 2023. Deprotonation of trinitrotoluene by dichloromethane in atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 37(3): e9434. https://doi.org/10.1002/rcm.9434
  56. Stefancu A., Iancu S.D., Moisoiu V., Leopold N. 2018. Specific and selective SERS active sites generation on silver nanoparticles by cationic and anionic adatoms. Romanian Reports in Physics, 70: 509.
  57. To K.C., Ben-Jaber S., Parkin I.P. 2020. Recent developments in the field of explosive trace detection. ACS Nano, 14(9): 10804–10833. https://doi.org/10.1021/acsnano.0c01579
  58. Vanlalveni C., Lallianrawna S., Biswas A., Selvaraj M., Changmai B., Rokhum S.L. 2021. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Advances, 11(5): 2804–2837. https://doi.org/10.1039/D0RA09941D
  59. Xu M., He L., Sun P., Wu M., Cui X., Liu D., Maser E. 2023. Critical role of monooxygenase in biodegradation of 2,4,6-trinitrotoluene by Buttiauxella sp. S19-1. Molecules, 28(4): 1969. https://doi.org/0.3390/molecules28041969
  60. Xu M-L., Gao Yu., Han X-X., Zhao B. 2017. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: A review. Journal of Agricultural and Food Chemistry, 65: 6719–6726. https://doi.org/10.1021/acs.jafc.7b02504
  61. Xu M-L., Gao Yu., Han X-X., Zhao B. 2022. Innovative application of SERS in food quality and safety: A brief review of recent trends. Foods, 11: 2097. https://doi.org/10.3390/foods11142097
  62. Yang X., Zhang Y., Lai J.L., Luo X.G., Han M.W., Zhao S.P., Zhu Y.B. 2021. Analysis of the biodegradation and phytotoxicity mechanism of TNT, RDX, HMX in alfalfa (Medicago sativa). Chemosphere, 281: 130842. https://doi.org/10.1016/j.chemosphere.2021.130842
  63. Ying S., Guan Z., Ofoegbu P.C., Clubb P., Rico C.H.F., Hong J. 2022. Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26: 102336. https://doi.org/10.1016/j.eti.2022.102336
  64. Zapata F., López-López M., García-Ruiz C. 2016. Detection and identification of explosives by surface enhanced Raman scattering. Applied Spectroscopy Reviews, 51(3): 227–226. https://doi.org/10.1080/05704928.2015.1118637