ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 6 of 8
Up
Ukr. Bot. J. 2025, 82(4): 336–344
https://doi.org/10.15407/ukrbotj82.04.336
Biotechnology, Physiology and Biochemistry

Biotransformation of xenobiotics by mycelium of Laricifomes officinalis (Polyporales, Basidiomycota)

Bondaruk S.V. 1,2, Korzh R.A. 2, Al-Maali G.A. 1,2
Abstract

Laricifomes officinalis is known for producing biologically active pharmaceuticals. This species belongs to wood-decay fungi capable of biotransforming various xenobiotics. Despite this potential, the ability of L. officinalis to biotransform various chemical compounds has not been previously investigated. This study is aimed at evaluating the biotransformation ability of three strains of L. officinalis towards diclofenac, naproxen, N-cyclohexylbenzamide, and N-phenylcyclohexanecarboxamide. As a result, all four selected compounds underwent successful biotransformation, and hydroxylated metabolites were detected for all of them. The biotransformation sufficiency of the four studied compounds was 80.5–83.1% of diclofenac, 78.1–88.4% of naproxen, 58.2% of N-phenylcyclohexanecarboxamide, and 61% of N-cyclohexylbenzamide. Additionally, other types of metabolites were identified in the biotransformation of diclofenac and naproxen. Among the three studied strains, L. officinalis 2498 demonstrated the highest efficiency in degrading the tested compounds.

Supplementary Material. Supplementary Materials (S1–S3) are available on this website: ukrbotj82-04-336-S1.pdf (64 KB), ukrbotj82-04-336-S2.pdf (74 KB), ukrbotj82-04-336-S3.pdf (88 KB)

Keywords: amides, biodegradation, diclofenac, Fomitopsis officinalis, Laricifomes officinalis, naproxen

Full text: PDF (Eng) 242K

References
  1. Aracagök Y.D., Göker H., Cihangir N. 2017. Biodegradation of micropollutant naproxen with a selected fungal strain and identification of metabolites. Zeitschrift für Naturforschung C, 72(5–6): 173–179. https://doi.org/10.1515/znc-2016-0162
  2. Areesanan A., Wasilewicz A., Nicolay S., Grienke U., Zimmermann-Klemd A.M., Rollinger J.M., Gründemann C. 2025. Evaluation of in vitro pharmacological activities of medicinal mushrooms in the context of dry eye disease. Frontiers in Pharmacology, 16: 1557359. https://doi.org/10.3389/fphar.2025.1557359
  3. Bisko N., Lomberg M., Mykhaylova O., Mytropolska N. 2020. IBK Mushroom Culture Collection. Version 1.2., The IBK Mushroom Culture Collection of the M.G. Kholodny Institute of Botany. Occurrence dataset, GBIF (Global Biodiversity Information Facility). https://doi.org/10.15468/dzdsqu
  4. Brazkova M., Koleva R., Angelova G., Yemendzhiev H. 2022. Ligninolytic enzymes in Basidiomycetes and their application in xenobiotics degradation. BIO Web of Conferences, 45: art. 02009. https://doi.org/10.1051/bioconf/20224502009
  5. Cheute V.M.S., Uber T.M., dos Santos L.F.O., Backes E., Dantas M.P., Contato A.G., Castoldi R., de Souza C.G.M., Corrêa R.C.G., Bracht A., Peralta R.M. 2024. Biotransformation of pollutants by Pycnoporus spp. in submerged and solid-state fermentation: mechanisms, achievements, and perspectives. Biomass, 4(2): 313–328. https://doi.org/10.3390/biomass4020015
  6. Cruz-Ornelas R., Sánchez-Vázquez J.E., Amaya-Delgado L., Guillén-Navarro K., Calixto-Romo A. 2019. Biodegradation of NSAIDs and their effect on the activity of ligninolytic enzymes from Pleurotus djamor. 3 Biotech, 9(10): art. 373. https://doi.org/10.1007/s13205-019-1904-4
  7. Dhiman N., Chaudhary S., Singh A., Chauhan A., Kumar R. 2022. Sustainable degradation of pharmaceutical waste using different fungal strains: Enzyme induction, kinetics and isotherm studies. Environmental Technology & Innovation, 25: art. 102156. https://doi.org/10.1016/j.eti.2021.102156
  8. Domaradzka D., Guzik U., Wojcieszyńska D. 2015. Biodegradation and biotransformation of polycyclic non-steroidal anti-inflammatory drugs. Reviews in Environmental Science and Bio/Technology, 14: 229–239. https://doi.org/10.1007/s11157-015-9364-8
  9. Elkhateeb W.A., Daba G.M., Elnahas M.O., Thomas P.W. 2019. Fomitopsis officinalis mushroom: ancient gold mine of functional components and biological activities for modern medicine. Egyptian Pharmaceutical Journal, 18(4): 285–289. https://doi.org/10.4103/epj.epj_46_19
  10. Fijałkowska A., Muszyńska B., Sułkowska-Ziaja K., Kała K., Pawlik A., Stefaniuk D., Matuszewska A., Piska K., Pękala E., Kaczmarczyk P., Piętka J., Jaszek M. 2020. Medicinal potential of mycelium and fruiting bodies of an arboreal mushroom Fomitopsis officinalis in therapy of lifestyle diseases. Scientific Reports, 10: 20081. https://doi.org/10.1038/s41598-020-76899-1
  11. Flores G.A., Cusumano G., Ianni F., Blasi F., Angelini P., Cossignani L., Pellegrino R.M., Emiliani C., Venanzoni R., Zengin G., Acquaviva A., Di Simone S.C., Libero M.L., Nilofar, Orlando G., Menghini L., Ferrante C. 2023. Fomitopsis officinalis: spatial (pileus and hymenophore) metabolomic variations affect functional components and biological activities. Antibiotics, 12(4): 766. https://doi.org/10.3390/antibiotics12040766
  12. Fonken G.S., Herr M.E., Murray H.C., Reineke L.M. 1968. Microbiological oxygenation of alicyclic amides. Journal of Organic Chemistry, 33(8): 3182–3187. https://doi.org/10.1021/jo01272a034
  13. Grienke U., Zöll M., Peintner U., Rollinger J. M. 2014. European medicinal polypores – A modern view on traditional uses. Journal of Ethnopharmacology, 154(3): 564–583. https://doi.org/10.1016/j.jep.2014.04.030
  14. Han J., Li L., Zhong J., Tohtaton Z., Ren Q., Han L., Huang X., Yuan T. 2016. Officimalonic acids A−H, lanostane triterpenes from the fruiting bodies of Fomes officinalis. Phytochemistry, 130: 193–200. https://doi.org/10.1016/j.phytochem.2016.05.004
  15. Hayova V.P., Heluta V.P., Shevchenko M.V. 2020. Fomitopsis officinalis (Polyporales): are there any records of the fungus known from Ukraine? Ukrainian Botanical Journal, 77(1): 40–43. https://doi.org/10.15407/ukrbotj77.01.040
  16. Hernik D., Szczepańska E., Brenna E., Patejuk K., Olejniczak T., Strzała T., Boratyński F. 2023. Trametes hirsuta as an attractive biocatalyst for the preparative scale biotransformation of isosafrole into piperonal. Molecules, 28(8): 3643. https://doi.org/10.3390/molecules28083643
  17. Hleba L.A., Kompas M.A., Hutková J., Rajtar M., Petrová J., Čuboň J., Kántor A., Kačániová M. 2016. Antimicrobial activity of crude ethanolic extracts from some medicinal mushrooms. Journal of Microbiology, Biotechnology and Food Sciences, 5(1): 60–63. https://doi.org/10.15414/jmbfs.2016.5.special1.60-63
  18. Hwang C.H., Jaki B.U., Klein L.L., Lankin D.C., McAlpine J.B., Napolitano J.G., Fryling N.A., Franzblau S.G., Cho S.H., Stamets P.E., Wang Y., Pauli G.F. 2013. Chlorinated coumarins from the polypore mushroom Fomitopsis officinalis and their activity against Mycobacterium tuberculosis. Journal of Natural Products, 76(10): 1916–1922. https://doi.org/10.1021/np400497f
  19. Kałucka I.L., Svetasheva T. 2019. Fomitopsis officinalis. The IUCN Red List of Threatened Species 2019: e.T75104087A75104095. https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T75104087A75104095.en (Accessed 15 April 2025).
  20. Kasonga T.K., Coetzee M.A.A., Kamika I., Momba M.N.B. 2021. Assessing the fungal simultaneous removal efficiency of carbamazepine, diclofenac and ibuprofen in aquatic environment. Frontiers in Microbiology, 12: 755972. https://doi.org/10.3389/fmicb.2021.755972
  21. Kathiravan A., Joel Gnanadoss J. 2021. White-rot fungi-mediated bioremediation as a sustainable method for xenobiotic degradation. Environmental and Experimental Biology, 19(3): 103–119. https://doi.org/10.22364/eeb.19.11
  22. Klenk J.M., Kontny L.H., Escobedo-Hinojosa W., Nebel B.A., Hauer B. 2019. Oxyfunctionalization of nonsteroidal anti-inflammatory drugs by filamentous-fungi. Journal of Applied Microbiology, 127(3): 724–738. https://doi.org/10.1111/jam.14342
  23. Komorowicz M., Janiszewska-Latterini D., Przybylska-Balcerek A., Stuper-Szablewska K. 2023. Fungal biotransformation of hazardous organic compounds in wood waste. Molecules, 28(12): 4823. https://doi.org/10.3390/molecules28124823
  24. Liakh I., Harshkova D., Hrouzek P., Bišová K., Aksmann A., Wielgomas B. 2023. Green alga Chlamydomonas reinhardtii can effectively remove diclofenac from the water environment — A new perspective on biotransformation. Journal of Hazardous Materials, 455: 131570. https://doi.org/10.1016/j.jhazmat.2023.131570
  25. Marco-Urrea E., Pérez-Trujillo M., Blánquez P., Vicent T., Caminal G. 2010. Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR. Bioresource Technology, 101(7): 2159–2166. https://doi.org/10.1016/j.biortech.2009.11.019
  26. Muszynska B., Fijałkowska A., Sułkowska-Ziaja K., Włodarczyk A., Kaczmarczyk P., Nogaj E., Piętka J. 2020. Fomitopsis officinalis: a species of arboreal mushroom with promising biological and medicinal properties. Chemistry & Biodiversity, 17(6): e2000213. https://doi.org/10.1002/cbdv.202000213
  27. Mykchaylova O., Poyedіnok N. 2021. Antimicrobial activity of Fomitopsis officinalis (Vill.) Bondartsev & Singer in pure culture. Innovative Biosystems and Bioengineering, 5(4): 220–227. https://doi.org/10.20535/ibb.2021.5.4.246668
  28. Naranmandakh S., Murata T., Odonbayar B., Suganuma K., Batkhuu J., Sasaki K. 2018. Lanostane triterpenoids from Fomitopsis officinalis and their trypanocidal activity. Journal of Natural Medicines, 72(2): 523–529. https://doi.org/10.1007/s11418-018-1182-1
  29. Olicón-Hernández D.R., Camacho-Morales R.L., Pozo C., González-López J., Aranda E. 2019. Evaluation of diclofenac biodegradation by the ascomycete fungus Penicillium oxalicum at flask and bench bioreactor scales. Science of the Total Environment, 662: 607–614. https://doi.org/10.1016/j.scitotenv.2019.01.248
  30. Purnomo A.S., Rizqi H.D., Ulfi A., Nawfa R., Putro H.S. 2022. Decolorization and transformation of synthetic dye methylene blue by brown-rot fungus Fomitopsis pinicola. Indonesian Journal of Chemistry, 22(2): 557–564. https://doi.org/10.22146/ijc.69834
  31. Quinn L., Dempsey R., Casey E., Kane A., Murphy C.D. 2015. Production of drug metabolites by immobilised Cunninghamella elegans: from screening to scale up. Journal of Industrial Microbiology and Biotechnology, 42(5): 799–806. https://doi.org/10.1007/s10295-015-1594-9
  32. Majewska M., Harshkova D., Pokora W., Baścik-Remisiewicz A., Tułodziecki S., Aksmann A. 2021. Does diclofenac act like a photosynthetic herbicide on green algae? Chlamydomonas reinhardtii synchronous culture-based study with atrazine as reference. Ecotoxicology and Environmental Safety, 208: 111630. https://doi.org/10.1016/j.ecoenv.2020.111630
  33. Rodarte-Morales A.I., Feijoo G., Moreira M.T., Lema J.M. 2011. Biotransformation of three pharmaceutical active compounds by the fungus Phanerochaete chrysosporium in a fed batch stirred reactor under air and oxygen supply. Biodegradation, 23(1): 145–156. https://doi.org/10.1007/s10532-011-9494-9
  34. Rodríguez-Rodríguez C.E., Marco-Urrea E., Caminal G. 2010. Naproxen degradation test to monitor Trametes versicolor activity in solid-state bioremediation processes. Journal of Hazardous Materials, 179(1–3): 1152–1155. https://doi.org/10.1016/j.jhazmat.2010.02.091
  35. Schlüter R., Dallinger A., Kabisch J., Duldhardt I., Schauer F. 2019. Fungal biotransformation of short-chain n-alkylcycloalkanes. Applied Microbiology and Biotechnology, 103: 4137–4151. https://doi.org/10.1007/s00253-019-09749-4
  36. Sevindik M., Bal C., Eraslan E.C., Uysal I., Mohammed F.S. 2023. Medicinal mushrooms: a comprehensive study on their antiviral potential. Prospects in Pharmaceutical Sciences, 21(2): 42–56. https://doi.org/10.56782/pps.141
  37. Spano M., Goppa L., Girometta C.E., Giusti A.M., Rossi P., Cartabia M., Savino E., Mannina L. 2024. Dehydrated mycelia (Cordyceps militaris, Grifola frondosa, Hericium erinaceus and Laricifomes officinalis) as novel foods: a comprehensive NMR study. LWT – Food Science and Technology, 199: 116123. https://doi.org/10.1016/j.lwt.2024.116123
  38. Syed K., Shale K., Pagadala N.S., Tuszynski J. 2014. Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi. PLoS One, 9(1): e86683. https://doi.org/10.1371/journal.pone.0086683
  39. Teerapatsakul C., Pothiratana C., Chitradon L., Thachepan S. 2016. Biodegradation of polycyclic aromatic hydrocarbons by a thermotolerant white rot fungus Trametes polyzona RYNF13. The Journal of General and Applied Microbiology, 62(6): 303–312. https://doi.org/10.2323/jgam.2016.06.001
  40. Vedenicheva N., Al-Maali G., Bisko N., Kosakivska I., Garmanchuk L., Ostapchenko L. 2019. Effect of bioactive extracts with high cytokinin content from micelial biomass of Hericium coralloides and Fomitopsis officinalis on tumor cells in vitro. Bulletin of Taras Shevchenko National University of Kyiv. Series Biology, 3: 31–37. https://doi.org/10.17721/1728_2748.2019.79.31-37
  41. Wang Q., Cao R., Zhang Y., Qi P., Wang L., Fang S. 2021. Biosynthesis and regulation of terpenoids from basidiomycetes: exploration of new research. AMB Express, 11(1): 150. https://doi.org/10.1186/s13568-021-01304-7
  42. Wojcieszyńska D., Guzik U. 2020. Naproxen in the environment: its occurrence, toxicity to nontarget organisms and biodegradation. Applied Microbiology and Biotechnology, 104: 1849–1857. https://doi.org/10.1007/s00253-019-10343-x
  43. Wojcieszyńska D., Łagoda K., Guzik U. 2023. Diclofenac biodegradation by microorganisms and with immobilised systems — A review. Catalysts, 13(2): 412. https://doi.org/10.3390/catal13020412
  44. Wu H.T., Lu F.H., Su Y.C., Ou H.Y., Hung H.C., Wu J.S., Yang Y.C., Chang C.J. 2014. In vivo and in vitro anti-tumor effects of fungal extracts. Molecules, 19(2): 2546–2556. https://doi.org/10.3390/molecules19022546
  45. Wu X., Yang J.S., Yan M. 2009. Four new triterpenes from fungus of Fomes officinalis. Chemical and Pharmaceutical Bulletin, 57(2): 195–197. https://doi.org/10.1248/cpb.57.195
  46. Zarzyński P., Andres B. 2009. The connection between chosen phenolic compounds occurring in wood and the range of trophic abilities of quinine fungus (Laricifomes officinalis (Vill.) Kotl. et Pouzar). Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria, 8(3): 71–80.
  47. Zhong D.F., Sun L., Liu L., Huang H.H. 2003. Microbial transformation of naproxen by Cunninghamella species. Acta Pharmacologica Sinica, 24(5): 442–447.