ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 4 of 8
Up
Ukr. Bot. J. 2025, 82(4): 314–325
https://doi.org/10.15407/ukrbotj82.04.314
Plant Taxonomy, Geography and Floristics

Complete chloroplast genomes and phylogenetic positions of species of the genus Ziziphora (Lamiaceae) from Uzbekistan

Nikitina E. 1, Mirzayeva S. 2, Alieva K. 1, Ergashov I. 1,3, Yusupov Z. 1
Abstract

Species of the genus Ziziphora (Lamiaceae) are valuable medicinal and economically significant plants in the flora of Uzbekistan. Due to morphological similarities among species, accurate identification has been challenging. This study presents the first comprehensive analysis of the complete chloroplast genomes of species of Ziziphora native to Uzbekistan. Comparative analysis revealed genome size variation, conserved circular structures, and differences in nucleotide compositions. Each genome contains 131 genes, 86 of which are protein-coding and mainly associated with photosynthesis and plastid function. A relatively low GC (~37.8%) content is characteristic of chloroplast DNA compared to nuclear genomes of Ziziphora species. Phylogenetic analyses based on whole chloroplast genomes and selected variable markers positioned Ziziphora species as a distinct monophyletic lineage within the tribe Mentheae of the subfamily Nepetoideae. The results support the use of chloroplast DNA as a reliable marker in molecular phylogenetic taxonomy and evolutionary studies. This research contributes essential insights into the genetic structure, evolutionary history, and taxonomic placement of taxa of Ziziphora, providing a valuable foundation for conservation strategies.

Keywords: chloroplast genome, genetic structure, genome size variation, Lamiaceae, molecular taxonomy, phylogenetic analysis, taxonomic placement, Ziziphora

Full text: PDF (Eng) 4.44M

References
  1. Abduraimov O.S., Li W., Shomurodov H.F., Feng Y. 2023. Main medicinal plants of arid regions of Uzbekistan and their traditional use in folk medicine. Plants, 12(2950). https://doi.org/10.3390/plants12162950
  2. Alieva K.B., Peng Y., Usupbaev A., Tojibaev K.Sh., Yusupov Z., Ergashov I., Azimova D., Jiang Z. 2025. Synopsis of the genus Elymus (Poaceae) in Uzbekistan (Middle Asia) with a description of Elymus uzbekistanicus, a new species from Turkestan Mts. PhytoKeys, 257: 9–50. https://doi.org/10.3897/phytokeys.257.142950
  3. Amiryousefi A., Hyvönen J., Poczai P. 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics, 34(17): 3030–3031. https://doi.org/10.1093/bioinformatics/bty220
  4. Azimi M., Mehrzad J., Ahmadi A., Ahmadi E., Ghorbani Ranjbary A. 2021. Apoptosis induced by Ziziphora tenuior essential oil in human colorectal cancer cells. BioMed Research International, 2021(1): 5522964. https://doi.org/10.1155/2021/5522964
  5. Bräuchler Ch., Meimberg H., Heubl G. 2010. Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae) — Taxonomy, biogeography and conflicts. Molecular Phylogenetics and Evolution, 55(2): 501–523. https://doi.org/10.1016/j.ympev.2010.01.016
  6. Darriba D., Taboada G.L., Doallo R., Posada D. 2012. JModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8): 772–772. https://doi.org/10.1038/nmeth.2109
  7. Dekhkonov D., Asatulloev T., Yusupov Z., Tojiboeva U., Ergashov I., Sun W., Tojibaev K. 2025. Comparative chloroplast genome and phylogenetic analysis of Central Asian tulips. Nordic Journal of Botany, 7: e04460. https://doi.org/10.1111/njb.04460
  8. Dierckxsens N., Mardulyn P., Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 45(4): e18. https://doi.org/10.1093/nar/gkw955
  9. Dündar E., Tümen G. 2023. Phylogenetic analysis of Ziziphora (Lamiaceae) using nuclear (nrITS) and plastid (trnL-F) DNA: suggestions for new arrangements and status changes. Plant Biosystems, 157(4): 835–843. https://doi.org/10.1080/11263504.2023.2200789
  10. Drew B.T., Sytsma K.J. 2012. Phylogenetics, biogeography, and staminal evolution in the tribe Mentheae (Lamiaceae). American Journal of Botany, 99(5): 933–953. https://doi.org/10.3732/ajb.1100549
  11. Edler D., Klein J., Antonelli A., Silvestro D. 2021. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution, 12(2): 373–377. https://doi.org/10.1111/2041-210X.13512
  12. Ergashov I., Yusupov Z., Dolatyari A., Khorasani M., Eker I., Turdumatova N., Tojibaev K. 2025. New insights into the molecular phylogeny and biogeographical history of Allium subgenus Melanocrommyum (Amaryllidaceae) based on plastome and nuclear sequences. Plant Diversity, 47(4): 561–575. https://doi.org/10.1111/2041-210X.13512
  13. Felsenstein J. 1989. PHYLIP-Phylogeny Inference Package (Ver. 3.2). Cladistics, 5: 164–166.
  14. Greiner S., Lehwark P., Bock R. 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research, 47: W59–W64. https://doi.org/10.1093/nar/gkz238
  15. Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4): 772–780. https://doi.org/10.1093/molbev/mst010
  16. Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  17. Mazarei Z. 2023. Chemical composition and biological activity of Ziziphora clinopodioides essential oil: A review. Jundishapur Journal of Natural Pharmaceutical Products, 18(4): e137776. https://doi.org//10.5812/jjnpp-137776
  18. Menéndez C.D., Poczai P., Williams B., Myllys L., Ali Amiryousef A. 2023. IRplus: An augmented tool to detect inverted repeats in plastid genomes. Genome Biology and Evolution, 15(10): 177. https://doi.org/10.1093/gbe/evad177
  19. Mohammadhosseini M. 2017. The ethnobotanical, phytochemical and pharmacological properties and medicinal applications of essential oils and extracts of different Ziziphora species. Industrial Crops and Products, 105: 164–192. https://doi.org/10.1016/j.indcrop.2017.05.009
  20. Moon H.K., Smets E., Huysmans S. 2010. Phylogeny of tribe Mentheae (Lamiaceae): The story of molecules and micromorphological characters. Taxon, 59(4): 1065–1076. https://doi.org/10.1002/tax.594007
  21. Moon H.K., Hong S.P., Smets E., Huysmans S. 2009. Phylogenetic significance of leaf micromorphology and anatomy in the tribe Mentheae (Nepetoideae: Lamiaceae). Botanical Journal of the Linnean Society, 160(2): 211–231. https://doi.org/10.1111/j.1095-8339.2009.00979.x
  22. Mirzayeva S.T. 2023. Bioclimatic modeling of medicinal species Ziziphora pamiroalaica and Ziziphora pedicellata in Uzbekistan. ASU Scientific Bulletin, 8: 65–75.
  23. Niu Y., Qin Q., Dong Y., Wang X., Zhang S., Mu Z. 2023. Chloroplast genome structure and phylogenetic analysis of 13 Lamiaceae plants in Tibet. Frontiers in Bioscience-Landmark, 28(6): 110. https://doi.org/10.31083/j.fbl2806110
  24. Nikitina E., Khalbekova Kh. 2022. Species diversity and phylogenetic relationships within the tribe Mentheae (Lamiaceae) in Uzbekistan using ITS sequence data. IOP Conference. Series: Earth and Environmental Science, 1068: 012043. https://doi.org/10.1088/1755-1315/1068/1/012043
  25. Olennikov D.N., Akobirshoeva A.A. 2016. Flavonoids and phenylpropanoid compounds from Nepeta glutinosa and Ziziphora pamiroalaica. Chemistry of Natural Compounds, 52: 909–912. https://doi.org/10.1007/s10600-016-1812-3
  26. POWO. 2025–onward. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. https://powo.science.kew.org/
  27. Rambaut A. 2012. FigTree version v1.4.0. Available from: http://tree.bio.ed.ac.uk/software/figtree
  28. Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C., Guirao-Rico S., Librado P., Ramos-Onsins S.E., Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12): 3299–3302. https://doi.org/10.1093/molbev/msx248
  29. Selvi S., Satil F., Martin E., Çelenk S., Dirmenci T. 2015. Some evidence for infrageneric classification in Ziziphora L. (Lamiaceae: Mentheae). Plant Biosystems, 149(2): 415–423. https://doi.org/10.1080/11263504.2013.853701
  30. Šmejkal K., Malaník M., Zhaparkulova K., Sakipova Z., Ibragimova L., Ibadullaeva G., Žemlička M. 2016. Kazakh Ziziphora species as sources of bioactive substances. Molecules, 21(7): 826. https://doi.org/10.3390/molecules21070826
  31. Tulyaganova M. 1978. Ziziphora. In: Conspectus florae Asiae Mediae. Vol. 9. Ed. A.I. Vvedensky. Tashkent: FAN, pp. 156–160.
  32. Tabaripour R., Sheidai M., Mehdi Talebi S., Noormohammadi Z. 2020. Population genetics and phylogeographic analysis of Ziziphora clinopodioides Lam. (Lamiaceae): an attempt to delimit its subspecies. Karyology, 73(2): 99–110. https://doi.org/10.13128/caryologia-573
  33. Vvedensky A.I. 1961. Ziziphora. In: Flora of Uzbekistan. Vol. 5. Ed. A.I. Vvedensky. Tashkent: FAN, pp. 297–380.
  34. Zhao F., Chen Y.P., Salmaki Y., Drew B.T. 2021. An updated tribal classification of Lamiaceae based on plastome phylogenomics. BMC biology, 19: 1–27. https://doi.org/10.1186/s12915-020-00931-z
  35. Zhaparkulova K., Karaubayeva A., Sakipova Z., Biernasiuk A., Gaweł-Bęben K., Laskowski T., Kusniyeva A., Omargali A., Bekezhanova T., Ibragimova L., Jakiyanov A., Czech K., Tastambek K., Głowniak K., Kukula-Koch W. 2022. Multidirectional characterization of phytochemical profile and health-promoting effects of Ziziphora bungeana Juz. extracts. Molecules, 27(24): 8994. https://www.mdpi.com/1420-3049/27/24/8994
  36. Zhu A., Guo W., Gupta S., Fan W., Mower J. 2016. Evolutionary dynamics of the plastid inverted repeat: The effects of expansion, contraction, and loss on substitution rates. New Phytologist, 209: 1747–1756. https://doi.org:10.1111/nph.13743