ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 2 of 6
Up
Ukr. Bot. J. 2025, 82(2): 90–97
https://doi.org/10.15407/ukrbotj82.02.090
Fungi and Fungi-like Organisms

No short-term benefits of inoculation with ericoid mycorrhizal fungi for highbush blueberry (Vaccinium corymbosum: Ericaceae) cultivated under controlled conditions in rhizotrons

Kiladze E. 1, Wojciechowski T. 2, Bryla D.R. 3, Bitsadze N. 1
Abstract

Ericoid mycorrhizal fungi (ErMF) enhance nutrient uptake in highbush blueberry (Vaccinium sp.); however, it is unclear whether inoculating plants with ErMF is actually beneficial. A 40-day rhizotron trial evaluated the effects of two ErMF isolates (Hyaloscypha hepaticicola and Oidiodendron maius), individually and combined, on growth and root develop­ment of the ‘Duke’ and ‘Legacy’ varieties of highbush blueberry, Vaccinium corymbosum s. l. Fungal inoculation increased leaf nitrogen concentration in the ‘Duke’ cultivar plants; a decrease in root biomass was also recorded for the ‘Legacy’ cultivar plants compared to the uninoculated plants. The total root length in the ‘Duke’ cultivar was lower with O. maius or combined inoculum, and leaf potassium concentration in the ‘Legacy’ cultivar decreased with H. hepaticicola or combined inoculum. These findings suggest no short-term benefits of ErMF inoculation for highbush blueberry under the tested conditions. Further research is needed to evaluate potential long-term effects and optimize inoculation strategies.

Keywords: mycorrhizal colonization, nutrient uptake, plant biomass, root architecture, Vaccinium corymbosum

Full text: PDF (Eng) 2.44M

References
  1. Albornoz F.E., Kingsley W.D., Lambers H. 2021. Revisiting mycorrhizal dogmas: Are mycorrhizas really functioning as they are widely believed to do? Soil Ecology Letters, 3: 73–82. https://doi.org/10.1007/s42832-020-0070-2
  2. Bertolot M., Buffoni B., Mazzarino S., Hoff G., Martino E., Fiorili V., Salvioli Di Fossalunga A. 2024. The importance of mycorrhizal fungi and their associated bacteria in promoting crops' performance: An applicative perspective. Horticulturae, 10(12): 1326. https://doi.org/10.3390/horticulturae10121326
  3. Brody A.K., Waterman B., Ricketts T.H., Degrassi A.L., González J.B., Harris J.M., Richardson L.L. 2019. Genotype-specific effects of ericoid mycorrhizae on floral traits and reproduction in Vaccinium corymbosum. American Journal of Botany, 106: 1412–1422. https://doi.org/10.1002/ajb2.1372
  4. Bryla D.R., Eissenstat D.M. 2005. Respiratory costs of mycorrhizal associations. In: Lambers H., Ribas-Carbo M. (eds.). Plant respiration. From cell to ecosystem. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 207–224.
  5. Buwalda J.G., Goh K.M. 1982. Host-fungus competition for carbon as a cause of growth depressions in vesicular-arbuscular mycorrhizal ryegrass. Soil Biology and Biochemistry, 14(2): 103–106. https://doi.org/10.1016/0038-0717(82)90052-9
  6. Coville F.V. 1910. Experiments in blueberry culture. U.S. Dept. of Agriculture, Bureau of Plant Industry, Bulletin, 193: 1–89.
  7. Derkowska E., Paszt L.S., Dyki B., Sumorok B. 2015. Assessment of mycorrhizal frequency in the roots of fruit plants using different dyes. Advances in Microbiology, 5(1): 54–64. https://doi.org/10.4236/aim.2015.51006
  8. International Blueberry Organization. 2023. Global state of the blueberry industry report. Available at: https://www.internationalblueberry.org/2023-report/
  9. Fehrer J., Réblová M., Bambasová V., Vohník M. 2019. The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: Phylogenetic and experimental evidence. Studies in Mycology, 92(1): 195–225. https://doi.org/10.1016/j.simyco.2018.10.004
  10. Grelet G.-A., Ba R., Goeke D.F., Houliston G.J., Taylor A.F.S., Durall D.M. 2017. A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings. Mycorrhiza, 27: 831–839. https://doi.org/10.1007/s00572-017-0797-5
  11. Hetrick B.A.D. 1991. Mycorrhizas and root architecture. Experientia, 47: 355–362. https://doi.org/10.1007/BF01972077
  12. Kalt W., Cassidy A., Howard L.R., Krikorian R., Stull A.J., Tremblay F., Zamora-Ros R. 2020. Recent research on the health benefits of blueberries and their anthocyanins. Advances in Nutrition, 11(2): 224–236. https://doi.org/10.1093/advances/nmz065
  13. Koide R.T. 1985. The nature of growth depressions in sunflower caused by vesicular-arbuscular mycorrhizal infection. New Phytologist, 99(3): 449–462. https://doi.org/10.1111/j.1469-8137.1985.tb03672.x
  14. Martino E., Morin E., Grelet G., Kuo A., Kohler A., Daghino S., Barry W.K., Cichocki N., Clum A., Dockter B.R., Hainaut M., Kuo C.R., LaButti K., Lindahl D.B., Lindquist A.E., Lipzen A., Khouja R.H., Magnuson J., Murat C., Ohm A.R., Singer W.S., Spatafora W.J., Wang M., Veneault-Fourrey C., Henrissat B., Grigoriev V.I., Martin M.F., Perotto S. 2018. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist, 217(3): 1213–1229. https://doi.org/10.1111/nph.14974
  15. Nagel K.A., Putz A., Gilmer F., Heinz K., Fischbach A., Pfeifer J., Faget M., Blossfeld S., Ernst M., Dimaki C., Kastenholz B., Kleinert A.-K., Galinski A., Scharr H., Fiorani F., Schurr U. 2012. GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Functional Plant Biology, 39(11): 891–904. https://doi.org/10.1071/FP12023
  16. Peng S.B., Eissenstat D.M., Graham J.H., Williams K., Hodge N.C. 1993. Growth depression in mycorrhizal citrus at high phosphorus supply. Plant Physiology, 101(3): 1063–1071. https://doi.org/10.1104/pp.101.3.1063
  17. Perotto S., Daghino S., Martino E. 2018. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? New Phytologist, 220(4): 1141–1147. https://doi.org/10.1111/nph.15218
  18. Protzman E. 2021. Blueberries around the globe — past, present, and future. International Agricultural Trade Report. Available at: https://fas.usda.gov//sites/default/files/2021-10/GlobalBlueberriesFinal_1.pdf
  19. Retamales J.B., Hancock J.F. 2018. Blueberries. 2nd ed. Boston, Massachusetts, USA: CABI, 413 pp.
  20. Scagel C.F. 2005a. Inoculation with ericoid mycorrhizal fungi alters fertilizer use of highbush blueberry cultivars. HortScience, 40(3): 786–794. https://doi.org/10.21273/hortsci.40.3.786
  21. Scagel C.F. 2005b. Inoculation with ericoid mycorrhizal fungi alters root colonization and growth in nursery production of blueberry plants from tissue culture and cuttings. Small Fruits Review, 4(4): 113–135. https://doi.org/10.1300/J301v04n04_11
  22. Scagel C.F., Wagner A., Winiarski P. 2005. Frequency and intensity of root colonization by ericoid mycorrhizal fungi in nursery production of blueberry plants. Small Fruits Review, 4(4): 95–112. https://doi.org/10.1300/J301v04n04_10
  23. Smith S.E., Read D.J. 2008. Mycorrhizal Symbiosis. 3rd ed. New York: Academic Press, 800 pp.
  24. Stebbins R.L., Wilder K.L. 1988. Leaf analysis of nutrient disorders in tree fruits and small fruits. Oregon State University Extension Service, OSU Extension Catalog: FS 118. Available at: https://extension.oregonstate.edu/catalog/pub/ec-628-guide-collecting-soil-samples-farms-gardens
  25. Taylor J., Harrier L. 2000. A comparison of nine species of arbuscular mycorrhizal fungi on the development and nutrition of micropropagated Rubus idaeus L. cv. Glen Prosen (Red raspberry). Plant and Soil, 225: 53–61. https://doi.org/10.1023/A:1026519431096
  26. Tsintsadze S., Bobokashvili Z. 2023. Peculiarities of development of phenological phases of some new introduced cultivars of blueberry (Vaccinium corymbosum) in Georgia (Guria Region). Electronic Journal of Biology, 19(5): 1–8. Available at: https://ejbio.imedpub.com/articles/peculiarities-of-development-of-phenological-phases-of-some-new-introduced-cultivars-of-blueberry-ivaccinium-corymbosum-i-l-in-geo.php?aid=51769
  27. Villarreal-Ruiz L., Neri-Luna C., Anderon I.C., Alexander I.J. 2012. In vitro interactions between ectomycorrhizal fungi and ericaceous plants. Symbiosis, 56: 67–75. https://doi.org/10.1007/s13199-012-0161-7
  28. Vohník M. 2020. Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. Mycorrhiza, 30: 671–695. https://doi.org/10.1007/s00572-020-00989-1
  29. Walker C. 2005. A simple blue staining technique for arbuscular mycorrhizal and other root-inhabiting fung. Inoculum, 56: 68–69.
  30. Wei X., Zhang W., Zulfiqar F., Zhang C., Chen J. 2022. Ericoid mycorrhizal fungi as biostimulants for improving propagation and production of ericaceous plants. Frontiers in Plant Science, 13: 1027390. https://doi.org/10.3389/fpls.2022.1027390