Ukr. Bot. J. 2025, 82(2): 90–97 https://doi.org/10.15407/ukrbotj82.02.090Fungi and Fungi-like Organisms
No short-term benefits of inoculation with ericoid mycorrhizal fungi for highbush blueberry (Vaccinium corymbosum: Ericaceae) cultivated under controlled conditions in rhizotrons
Kiladze E. 1, Wojciechowski T. 2, Bryla D.R. 3, Bitsadze N. 1- 1 Laboratory of Mycology and Plant Pathology, Agricultural University of Georgia,
- Kakha Bendukidze Campus, Tbilisi 0159, Georgia / Sakartvelo
- 2 Institute of Plant Sciences, IBG-2, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- 3 U.S. Department of Agriculture, Agricultural Research Service,
- Horticultural Crops Production and Genetic Improvement Research Unit, Corvallis, Oregon, USA
Abstract
Ericoid mycorrhizal fungi (ErMF) enhance nutrient uptake in highbush blueberry (Vaccinium sp.); however, it is unclear whether inoculating plants with ErMF is actually beneficial. A 40-day rhizotron trial evaluated the effects of two ErMF isolates (Hyaloscypha hepaticicola and Oidiodendron maius), individually and combined, on growth and root development of the ‘Duke’ and ‘Legacy’ varieties of highbush blueberry, Vaccinium corymbosum s. l. Fungal inoculation increased leaf nitrogen concentration in the ‘Duke’ cultivar plants; a decrease in root biomass was also recorded for the ‘Legacy’ cultivar plants compared to the uninoculated plants. The total root length in the ‘Duke’ cultivar was lower with O. maius or combined inoculum, and leaf potassium concentration in the ‘Legacy’ cultivar decreased with H. hepaticicola or combined inoculum. These findings suggest no short-term benefits of ErMF inoculation for highbush blueberry under the tested conditions. Further research is needed to evaluate potential long-term effects and optimize inoculation strategies.
Keywords: mycorrhizal colonization, nutrient uptake, plant biomass, root architecture, Vaccinium corymbosum
Full text: PDF (Eng) 2.44M
References
- Albornoz F.E., Kingsley W.D., Lambers H. 2021. Revisiting mycorrhizal dogmas: Are mycorrhizas really functioning as they are widely believed to do? Soil Ecology Letters, 3: 73–82. https://doi.org/10.1007/s42832-020-0070-2
- Bertolot M., Buffoni B., Mazzarino S., Hoff G., Martino E., Fiorili V., Salvioli Di Fossalunga A. 2024. The importance of mycorrhizal fungi and their associated bacteria in promoting crops' performance: An applicative perspective. Horticulturae, 10(12): 1326. https://doi.org/10.3390/horticulturae10121326
- Brody A.K., Waterman B., Ricketts T.H., Degrassi A.L., González J.B., Harris J.M., Richardson L.L. 2019. Genotype-specific effects of ericoid mycorrhizae on floral traits and reproduction in Vaccinium corymbosum. American Journal of Botany, 106: 1412–1422. https://doi.org/10.1002/ajb2.1372
- Bryla D.R., Eissenstat D.M. 2005. Respiratory costs of mycorrhizal associations. In: Lambers H., Ribas-Carbo M. (eds.). Plant respiration. From cell to ecosystem. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 207–224.
- Buwalda J.G., Goh K.M. 1982. Host-fungus competition for carbon as a cause of growth depressions in vesicular-arbuscular mycorrhizal ryegrass. Soil Biology and Biochemistry, 14(2): 103–106. https://doi.org/10.1016/0038-0717(82)90052-9
- Coville F.V. 1910. Experiments in blueberry culture. U.S. Dept. of Agriculture, Bureau of Plant Industry, Bulletin, 193: 1–89.
- Derkowska E., Paszt L.S., Dyki B., Sumorok B. 2015. Assessment of mycorrhizal frequency in the roots of fruit plants using different dyes. Advances in Microbiology, 5(1): 54–64. https://doi.org/10.4236/aim.2015.51006
- International Blueberry Organization. 2023. Global state of the blueberry industry report. Available at: https://www.internationalblueberry.org/2023-report/
- Fehrer J., Réblová M., Bambasová V., Vohník M. 2019. The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: Phylogenetic and experimental evidence. Studies in Mycology, 92(1): 195–225. https://doi.org/10.1016/j.simyco.2018.10.004
- Grelet G.-A., Ba R., Goeke D.F., Houliston G.J., Taylor A.F.S., Durall D.M. 2017. A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings. Mycorrhiza, 27: 831–839. https://doi.org/10.1007/s00572-017-0797-5
- Hetrick B.A.D. 1991. Mycorrhizas and root architecture. Experientia, 47: 355–362. https://doi.org/10.1007/BF01972077
- Kalt W., Cassidy A., Howard L.R., Krikorian R., Stull A.J., Tremblay F., Zamora-Ros R. 2020. Recent research on the health benefits of blueberries and their anthocyanins. Advances in Nutrition, 11(2): 224–236. https://doi.org/10.1093/advances/nmz065
- Koide R.T. 1985. The nature of growth depressions in sunflower caused by vesicular-arbuscular mycorrhizal infection. New Phytologist, 99(3): 449–462. https://doi.org/10.1111/j.1469-8137.1985.tb03672.x
- Martino E., Morin E., Grelet G., Kuo A., Kohler A., Daghino S., Barry W.K., Cichocki N., Clum A., Dockter B.R., Hainaut M., Kuo C.R., LaButti K., Lindahl D.B., Lindquist A.E., Lipzen A., Khouja R.H., Magnuson J., Murat C., Ohm A.R., Singer W.S., Spatafora W.J., Wang M., Veneault-Fourrey C., Henrissat B., Grigoriev V.I., Martin M.F., Perotto S. 2018. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist, 217(3): 1213–1229. https://doi.org/10.1111/nph.14974
- Nagel K.A., Putz A., Gilmer F., Heinz K., Fischbach A., Pfeifer J., Faget M., Blossfeld S., Ernst M., Dimaki C., Kastenholz B., Kleinert A.-K., Galinski A., Scharr H., Fiorani F., Schurr U. 2012. GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Functional Plant Biology, 39(11): 891–904. https://doi.org/10.1071/FP12023
- Peng S.B., Eissenstat D.M., Graham J.H., Williams K., Hodge N.C. 1993. Growth depression in mycorrhizal citrus at high phosphorus supply. Plant Physiology, 101(3): 1063–1071. https://doi.org/10.1104/pp.101.3.1063
- Perotto S., Daghino S., Martino E. 2018. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? New Phytologist, 220(4): 1141–1147. https://doi.org/10.1111/nph.15218
- Protzman E. 2021. Blueberries around the globe — past, present, and future. International Agricultural Trade Report. Available at: https://fas.usda.gov//sites/default/files/2021-10/GlobalBlueberriesFinal_1.pdf
- Retamales J.B., Hancock J.F. 2018. Blueberries. 2nd ed. Boston, Massachusetts, USA: CABI, 413 pp.
- Scagel C.F. 2005a. Inoculation with ericoid mycorrhizal fungi alters fertilizer use of highbush blueberry cultivars. HortScience, 40(3): 786–794. https://doi.org/10.21273/hortsci.40.3.786
- Scagel C.F. 2005b. Inoculation with ericoid mycorrhizal fungi alters root colonization and growth in nursery production of blueberry plants from tissue culture and cuttings. Small Fruits Review, 4(4): 113–135. https://doi.org/10.1300/J301v04n04_11
- Scagel C.F., Wagner A., Winiarski P. 2005. Frequency and intensity of root colonization by ericoid mycorrhizal fungi in nursery production of blueberry plants. Small Fruits Review, 4(4): 95–112. https://doi.org/10.1300/J301v04n04_10
- Smith S.E., Read D.J. 2008. Mycorrhizal Symbiosis. 3rd ed. New York: Academic Press, 800 pp.
- Stebbins R.L., Wilder K.L. 1988. Leaf analysis of nutrient disorders in tree fruits and small fruits. Oregon State University Extension Service, OSU Extension Catalog: FS 118. Available at: https://extension.oregonstate.edu/catalog/pub/ec-628-guide-collecting-soil-samples-farms-gardens
- Taylor J., Harrier L. 2000. A comparison of nine species of arbuscular mycorrhizal fungi on the development and nutrition of micropropagated Rubus idaeus L. cv. Glen Prosen (Red raspberry). Plant and Soil, 225: 53–61. https://doi.org/10.1023/A:1026519431096
- Tsintsadze S., Bobokashvili Z. 2023. Peculiarities of development of phenological phases of some new introduced cultivars of blueberry (Vaccinium corymbosum) in Georgia (Guria Region). Electronic Journal of Biology, 19(5): 1–8. Available at: https://ejbio.imedpub.com/articles/peculiarities-of-development-of-phenological-phases-of-some-new-introduced-cultivars-of-blueberry-ivaccinium-corymbosum-i-l-in-geo.php?aid=51769
- Villarreal-Ruiz L., Neri-Luna C., Anderon I.C., Alexander I.J. 2012. In vitro interactions between ectomycorrhizal fungi and ericaceous plants. Symbiosis, 56: 67–75. https://doi.org/10.1007/s13199-012-0161-7
- Vohník M. 2020. Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. Mycorrhiza, 30: 671–695. https://doi.org/10.1007/s00572-020-00989-1
- Walker C. 2005. A simple blue staining technique for arbuscular mycorrhizal and other root-inhabiting fung. Inoculum, 56: 68–69.
- Wei X., Zhang W., Zulfiqar F., Zhang C., Chen J. 2022. Ericoid mycorrhizal fungi as biostimulants for improving propagation and production of ericaceous plants. Frontiers in Plant Science, 13: 1027390. https://doi.org/10.3389/fpls.2022.1027390