ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 8 of 8
Up
Ukr. Bot. J. 2025, 82(2): 171–185
https://doi.org/10.15407/ukrbotj82.02.171
Biotechnology, Physiology and Biochemistry

Effect of pre-sowing treatment with silver and copper nanoparticles on the lectin dependent adaptive reactions of Triticum aestivum (Poaceae) to the eyespot causal agent Oculimacula yallundae (Helotiales, Ascomycota)

Pysmenna Yu.M., Panyuta O.O., Belava V.N., Olkhovych O.P., Taran N.Yu.
Abstract

Morphometric parameters and lectin activity of seedlings of soft winter wheat (Triticum aestivum) inoculated with conidial suspension of Oculimacula yallundae, an eyespot causal agent, were studied under conditions of pre-sowing treat­ment with silver and copper nanoparticles. The study revealed that the seed treatment of two wheat cultivars of different resistance (a susceptible 'Myronivska 808' and a relatively resistant 'Renan') affects the seedling growth of both cultivars as well as protein content and lectin activity of various cellular fractions. It has been found that the lectin activity of cell wall fractions and cell organelles in wheat seedlings at the infection and pre-sowing treatment is higher than in uninfected seedlings. The dynamics of lectin activity of various cell fractions during infection differed. The reaction-response effect was more pronounced in seedlings of the 'Renan' cultivar relatively resistant to the pathogen. Pre-sowing treatment with Ag and Cu nanoparticles induced lectin-dependent defense responses in wheat seedlings of both studied cultivars. The obtained results hold potential for further research and use of metal nanoparticles for plant protection against biotic and abiotic factors.

Keywords: lectin activity, morphometry, nanoparticles, pathogen, protein, Pseudocercosporella herpotrichoides, tolerance index, winter wheat

Full text: PDF (Ukr) 743K

References
  1. Al-Huqail A.A., Hatata M.M., Al-Huqail A.A., Ibrahim M.M. 2018. Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi Journal of Biological Sciences, 25(2): 313–319. https://doi.org/10.1016/j.sjbs.2017.08.013
  2. Anikeev V.V., Kutuzov F.F. 1961. A new method of determining the leaf surface in cereals. Fiziologiya Rasteniy, 8(3): 375–377.
  3. Badawy A.A., Abdelfattah N.A., Salem S.S., Awad M.F., Fouda A. 2021. Efficacy assessment of biosynthesized copper oxide nanoparticles (CuO-NPs) on stored grain insects and their impacts on morphological and physiological traits of wheat (Triticum aestivum L.) plant. Biology, 10(3): 233. https://doi.org/10.3390/biology10030233
  4. Belava V.N., Panyuta O.O., Taran N.Yu. 2009. The role of lectins in the protective reactions of plants to phytopathogens. Physiology and Biochemistry of Cultivated Plants, 41(3): 221–234
  5. Belava V.N., Zeleniy S.B., Panyuta O.O., Taran N.Yu., Pogribniy P.V. 2010. Expression of lectin and defensin genes in Mironovskaya 808 and Roazon wheat cultivars infected with Pseudocercosporella herpotrichoides. Biopolymers and Cell, 26(1): 45–50. https://doi.org/10.7124/bc.000143
  6. Belava V.N., Panyuta O.O., Yakovleva G.M., Pysmenna Y.M., Volkogon M.V. 2017. The effect of silver and copper nanoparticles on the wheat — Pseudocercosporella herpotrichoides pathosystem. Nanoscale Research Letters, 12(1): 250. https://doi.org/10.1186/s11671-017-2028-6
  7. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2): 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  8. Chekman I.S. 2009. Nanoparticles: properties and prospects of application. Ukrainian Biochemical Journal, 81(1): 122–129.
  9. Cvjetko P., Milošić A., Domijan A.-M., Vinković Vrček I., Tolić S., Peharec Štefanić P., Letofsky-Papst I., Tkalec M., Balen B. 2017. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicology and Environmental Safety, 137: 18–28. https://doi.org/10.1016/j.ecoenv.2016.11.009
  10. Das P., Barua S., Sarkar S., Chatterjee S.K., Mukherjee S., Goswami L., Das S., Bhattacharya S., Karak N., Bhattacharya S.S. 2018. Mechanism of toxicity and transformation of silver nanoparticles: Inclusive assessment in earthworm-microbe-soil-plant system. Geoderma, 314: 73–84. https://doi.org/10.1016/j.geoderma.2017.11.008
  11. Dimkpa C.O., McLean J.E., Latta D.E., Manangón E., Britt D.W., Johnson W.P., Anderson A.J. 2012. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14: 1–15. https://doi.org/10.1007/s11051-012-1125-9
  12. Dos Santos C., Franco O.L. 2023. Pathogenesis-related proteins (PRs) with enzyme activity activating plant defense responses. Plants, 12(11): 2226. https://doi.org/10.3390/plants12112226
  13. Dzumabaev P. 1963. Eyespot of cereals. Plant Protection, 9: 55–56.
  14. Feigl G. 2023. The impact of copper oxide nanoparticles on plant growth: a comprehensive review. Journal of Plant Interactions, 18(1): 2243098. https://doi.org/10.1080/17429145.2023.2243098
  15. Ferreira R.B., Monteiro S., Freitas R., Santos C.N., Chen Z., Batista L.M., Duarte J., Borges A., Teixeira A.R. 2007. The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology, 8(5): 677–700. https://doi.org/10.1111/j.1364-3703.2007.00419.x
  16. Hoagland D.R., Arnon D.I. 1950. The water-culture method for growing plants without soil. California, Berkeley: University of California, College of Agriculture, Agricultural Experiment Station, 32 pp.
  17. Hwang I.S., Hwang B.K. 2011. The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiology, 155(1): 447–463. https://doi.org/10.1104/pp.110.164848
  18. Kacziba B., Szierer Á., Mészáros E., Rónavári A., Kónya Z., Feigl G. 2023. Exploration the homeostasis of signaling molecules in monocotyledonous crops with different CuO nanoparticle tolerance. Plant Stress, 7: 100145. https://doi.org/10.1016/j.stress.2023.100145
  19. Kim N.H., Lee D.H., Choi D.S., Hwang B.K. 2015. The pepper GNA-related lectin and PAN domain protein gene, CaGLP1, is required for plant cell death and defense signaling during bacterial infection. Plant Science, 241: 307–315. https://doi.org/10.1016/j.plantsci.2015.07.003
  20. Konozy E.H.E., Osman M.E.M., Dirar A.I., Ghartey-Kwansah G. 2022. Plant lectins: A new antimicrobial frontier. Biomedicine & Pharmacotherapy, 155: 113735. https://doi.org/10.1016/j.biopha.2022.113735
  21. Kravchenko N.O., Kopylov E.P., Golovach O.V., Dmytruk O.M. 2014. Assessment of pathogenicity of the soil fungus Trichoderma viride 505. Agricultural Microbiology, 20: 23–28. https://doi.org/10.35868/1997-3004.20.23-28
  22. Kryuchkova L.O. 2007. Diseases of winter wheat caused by necrotrophic fungal pathogens and methods for their diagnostics: Dr. Sci. Diss. Abstract. Kyiv, National Agrarian University, 50 pp.
  23. Kryuchkova L.O. 2013. Micromycetes associated with wheat diseases in different regions of Ukraine. Microbiological Journal, 75(4): 59–68.
  24. Lacko-Bartosova M., Korczyk-Szabo J., Razny R. 2010. Triticum spelta — a specialty grain for ecological farming systems. Research Journal of Agricultural Science, 42(1): 143–147.
  25. Liatukas Ž., Ruzgas V. 2008. Resistance of Lithuanian winter wheat breeding material to eyespot. Zemdirbyste-Agriculture, 95 (3): 336–343.
  26. Lopatko K.H. 2012. The use of biological properties of metal nanoparticles in the cultivation of cereals. Scientific Bulletin of the National University of Bioresources and Nature Management of Ukraine. Series: Technology and energy of agricultural industry, 170(1): 193–203.
  27. Lopatko K.H., Aftandiliants E.H., Kalenska S.M., Tonkha O.L. 2009. Method for obtaining a non-ionic colloidal solution of metals. Patent for invention 38459 of 12.01.09.
  28. López-Vargas E.R., Ortega-Ortíz H., Cadenas-Pliego G., De Alba Romenus K., Cabrera de la Fuente M., Benavides-Mendoza A., Juárez-Maldonado A. 2018. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Applied Sciences, 8(7): 1020. https://doi.org/10.3390/app8071020
  29. Mamenko P.M. 2014. Functions of plant lectins under abiotic and biotic stresses. Plant Physiology and Genetics, 46(2): 95–107.
  30. Mansoor S., Zahoor I., Baba T.R., Padder S.A., Bhat Z.A., Koul A.M., Jiang L. 2021. Fabrication of silver nanoparticles against fungal pathogens. Frontiers in Nanotechnology, 3: 679358. https://doi.org/10.3389/fnano.2021.679358
  31. Masarovičová E., Kráľová K. 2013. Metal nanoparticles and plants/ Nanocząstki metaliczne i rośliny. Ecological Chemistry and Engineering S, 20(1): 9–22. https://doi.org/10.2478/eces-2013-0001
  32. Matras E., Gorczyca A., Pociecha E., Przemieniecki S.W., Oćwieja M. 2022. Phytotoxicity of silver nanoparticles with different surface properties on monocots and dicots model plants. Journal of Soil Science and Plant Nutrition, 22: 1647–1664. https://doi.org/10.1007/s42729-022-00760-9
  33. Moradi A., El-Shetehy M., Gamir J., Austerlitz T., Dahlin P., Wieczorek K., Künzler M., Mauch F. 2021. Expression of a fungal lectin in Arabidopsis enhances plant growth and resistance toward microbial pathogens and a plant-parasitic nematode. Frontiers in Plant Science, 12: 657451. https://doi.org/10.3389/fpls.2021.657451
  34. Panyuta O.O., Belava V.N., Olkhovych O.P., Taran N.Yu. 2018. Effect of phosphate-mobilized microbial preparations on lectin activity and photosyntetic apparatus of winter wheat seedlings under eyespot causal agent infection. Microbiological Journal, 80 (6): 66–78. https://doi.org/10.15407/microbiolj80.06.066
  35. Panyuta O., Belava V., Fomaidi S., Kalinichenko O., Volkogon M., Taran N. 2016. The effect of pre-sowing seed treatment with metal nanoparticles on the formation of the defensive reaction of wheat seedlings infected with the eyespot causal agent. Nanoscale Research Letters, 11(1): 1–5. https://doi.org/10.1186/s11671-016-1305-0
  36. Pittol M., Tomacheski D., Simões D.N., Ribeiro V.F., Santana R.M.C. 2017. Macroscopic effects of silver nanoparticles and titaniumdioxide on edible plant growth. Environmental Nanotechnology, Monitoring & Management, 8: 127–133. https://doi.org/10.1016/j.enmm.2017.07.003
  37. Pogorila N.F., Surzhyk L.M., Pogorila Z.O. 2002. A new way of testing plant lectins. Ukrainian Botanical Journal, 59(2): 217–220.
  38. Pusztahelyi T. 2018. Chitin and chitin-related compounds in plant–fungal interactions. Mycology, 9: 189–201. https://doi.org/10.1080/21501203.2018.1473299
  39. Pysmenna Yu.M., Panyuta O.O., Belava V.N., Taran N.Yu. 2014. Lectin activity of cell walls and cell organelles of winter wheat (Triticum aestivum) seedlings under biotic stress. Journal of V.N. Karazin Kharkiv National University. Biology Series, 23(1129): 65–72.
  40. Qiu R., Wei S., Zhang M., Li H., Sun H., Liu G., Li M. 2018. Sensors for measuring plant phenotyping: A review. International Journal of Agricultural and Biological Engineering, 11(2): 1–17. https://doi.org/10.25165/j.ijabe.20181102.2696
  41. Raikhel N.V., Mishkind M.L., Palevitz B.A. 1984. Characterization of a wheat germ agglutinin-like lectin from adult wheat plants. Planta, 162(1): 55–61. https://doi.org/10.1007/BF00397421
  42. Rizwan M., Ali S., Qayyum M.F., Ok Y.S., Adrees M., Ibrahim M., Rehman Z.U., Farid M., Abbas F. 2017. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. Journal of Hazardous Materials, 322: 2–16. https://doi.org/10.1016/j.jhazmat.2016.05.061
  43. Rudiger H., Gabius H.-J. 2001. Plant lectins: Occurrence, biochemistry, functions and applications. Glycoconjugate Journal, 18: 589–613. https://doi.org/10.1023/a:1020687518999
  44. Taran N., Batsmanova L., Kosyk O., Smirnov O., Kovalenko M., Honchar L., Okanenko A. 2016. Colloidal nanomolybdenum influence upon the antioxidative reaction of chickpea plants (Cicer arietinum L.). Nanoscale Research Letters, 11(1): 476. https://doi.org/10.1186/s11671-016-1690-4
  45. Tortella G., Rubilar O., Fincheira P., Parada J., de Oliveira H.C., Benavides-Mendoza A., Leiva S., Fernandez-Baldo M., Seabra A.B. 2024. Copper nanoparticles as a potential emerging pollutant: Divergent effects in the agriculture, risk-benefit balance and integrated strategies for its use. Emerging Contaminants, 10(4): 100352. https://doi.org/10.1016/j.emcon.2024.100352
  46. Vusatyy R.O. 2005. Virulence of Pseudocercosporella herpotrichoides (Fron.) Deighton and development of donors creating methods of winter wheat resistance against eyespot pathogen. Cand. Sci. Diss. Abstract. Kharkiv, Kharkiv National Agrarian University named after V.V. Dokuchaev, 24 pp.
  47. Wilkins D.A. 1978. The measurement of tolerance to edaphic factors by means of root length. New Phytologist, 80: 623–633. https://doi.org/10.1111/j.1469-8137.1987.tb04685.x
  48. Yasmeen F., Raja N.I., Ilyas N., Komatsu S. 2018. Quantitative proteomic analysis of shoot in stress tolerant wheat varieties on copper nanoparticle exposure. Plant Molecular Biology Reporter, 36: 326–340. https://doi.org/10.1007/s11105-018-1082-2