ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 5 of 5
Up
Ukr. Bot. J. 2025, 82(1): 60–78
https://doi.org/10.15407/ukrbotj82.01.060
Structural Botany

Morphological and taxonomic overview of fruits in representatives of subclass Caryophyllidae in the flora of Ukraine

Odintsova A.V.
Abstract

Subclass Caryophyllidae is a paraphyletic group among the clade of superasterids; its taxonomic circumscription has undergone major changes due to molecular phylogenetic results. The present study is aimed at analyzing the available information on the morphological diversity of fruits and the gynoecium structure in representatives of this subclass in the Ukrainian flora. Three basic fruit types are recognized in Caryophyllidae: capsular, berry-like, and one-seeded fruits. In the annotated list of morphological fruit types, the characteristics and morphological diversity of fruits according to different sources are reported for each family. The occurrence of apocarpous fruits, inferior fruits, and placentation types are analyzed, as also the functional types of fruits adapted to autochory, ballistochory, anemochory, and ornithochory. The carpological spectrum of basic fruit types at the levels of family, genus, and species demonstrates the widespread occurrence of capsular and one-seeded fruits (with a slighlt predominance of one-seeded fruits at the species level), while only four species have berry-like fruits.

Keywords: Caryophyllales, circumscissile capsule, free-central placentation, gynoecium, morphology, one-seeded fruit, superior ovary, Santalales

Full text: PDF (Eng) 6.54M

References
  1. Almeida de V.P., Monchak I.T., da Costa Batista J.V., Grazi M., Ramm H., Raman V., Baumgartner S., Holandino C., Manfron J. 2023. Investigations on the morpho-anatomy and histochemistry of the European mistletoe: Viscum album L. subsp. album. Scientific Reports, 13: 4604. https://doi.org/10.1038/s41598-023-29799-z
  2. APG IV. 2016. The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1): 1–20. https://doi.org/10.1111/boj.12385
  3. Barthlott W., Hunt D.R. 1993. Cactaceae. In: The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid Families. Eds K. Kubitzki, J.G. Rohwer, V. Bittrich. Berlin, Heidelberg: Springer, pp. 161–196.
  4. Bittrich V. 1993a. Introduction to Centrospermae. In: The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid Families. Eds K. Kubitzki, J.G. Rohwer, V. Bittrich. Berlin, Heidelberg: Springer, pp. 13–19.
  5. Bittrich V. 1993b. Caryophyllaceae. In: The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid Families. Eds K. Kubitzki, J.G. Rohwer, V. Bittrich. Berlin, Heidelberg: Springer, pp. 206–236.
  6. Bittrich V., Kühn U. 1993. Nyctaginaceae. In: The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid Families. Eds K. Kubitzki, J.G. Rohwer, V. Bittrich. Berlin, Heidelberg: Springer, pp. 473–485.
  7. Brandbyge J. 1993. Polygonaceae. In: The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid Families. Eds K. Kubitzki, J.G. Rohwer, V. Bittrich. Berlin; Heidelberg: Springer, pp. 531–543.
  8. Bronskov O.I., Bronskova O.M. 2024. Tamarix laxa (Tamaricaceae), a new species in the flora of Ukraine. Ukrainian Botanical Journal, 81(3): 229–241. https://doi.org/10.15407/ukrbotj81.03.229
  9. Carolin R.C. 1993. Portulacaceae. In: The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid Families. Eds K. Kubitzki, J.G. Rohwer, V. Bittrich. Berlin; Heidelberg: Springer, pp. 544–555.
  10. Costea M., Waines G., Sanders A. 2001. Structure of the pericarp in some Amaranthus L. (Amaranthaceae) species and its taxonomic significance. Aliso, 20(2): 51–60. https://doi.org/10.5642/aliso.20012002.02
  11. Cronquist A. 1981. An integrated system of classification of flowering plants. New York: Columbia University Press, 1262 pp.
  12. Cuénoud Ph. 2003. Introduction to expanded Caryophyllales. In: The families and genera of vascular plants. Vol. 5. Flowering plants. Dicotyledons: Malvales, Capparales and non-betalain Caryophyllales. Eds K. Kubitzki, C. Bayer. Berlin; Heidelberg: Springer, pp. 1–4.
  13. De Laet J., Clinckemaillie D., Jansen S., Smets E. 1995. Floral ontogeny in the Plumbaginaceae. Journal of Plant Research, 108(3): 289–304. https://doi.org/10.1007/BF02344355
  14. Eames A.J. 1961. Morphology of the angiosperms. New York, Toronto: McGraw-Hill, 498 pp. https://doi.org/10.5962/bhl.title.5986
  15. Eckardt Th. 1976. Classical morphological features of Centrospermous families. Plant Systematics and Evolution, 126(1): 5–25. https://doi.org/10.1007/BF00986071
  16. Eichler A.W. 1875. Bluethendiagramme. Bd 1. Leipzig: Engelmann, 348 pp. https://doi.org/10.5962/bhl.title.12323
  17. Eichler A.W. 1878. Bluethendiagramme. Bd 2. Leipzig: Engelmann, 575 pp. https://doi.org/10.5962/bhl.title.12323
  18. Endress M.E., Bittrich V. 1993. Molluginaceae. In: The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid Families. Eds K. Kubitzki, J.G. Rohwer, V. Bittrich. Berlin; Heidelberg: Springer, pp. 419–425. https://doi.org/10.1007/978-3-662-02899-5_49
  19. Endress P.K. 2011. Evolutionary diversification of the flowers in angiosperms. American Journal of Botany, 98(3): 370–396. https://doi.org/10.3732/ajb.1000299
  20. Endress P.K. 2019. The morphological relationship between carpels and ovules in angiosperms: pitfalls of morphological interpretation. Botanical Journal of the Linnean Society, 189(3): 201–227. https://doi.org/10.1093/botlinnean/boy083
  21. Fedoronchuk M.M. 2023. Ukrainian flora checklist. 5: family Caryophyllaceae (incl. Illecebraceae) (Caryophyllales, Angiosperms). Chornomorski Botanical Journal, 19(1): 5–57. https://doi.org/10.32999/ksu1990-553X/2023-19-1-1
  22. Fedoronchuk M.M., Didukh Ya.P. 2002. Ecoflora of Ukraine. Vol. 3. Ed. Ya.P. Didukh. Kyiv: Phytosociocentre, 496 pp.
  23. García M.A., Mucina L., Nickrent D. 2024. A tough nutlet to crack: Resolving the phylogeny of Thesium (Thesiaceae), the largest genus in Santalales. Taxon, 73: 190–236. https://doi.org/10.1002/tax.13123
  24. Gaskin J.F. 2003. Tamaricaceae. In: The families and genera of vascular plants. Vol. 5. Flowering plants. Dicotyledons: Malvales, Capparales and non-betalain Caryophyllales. Eds K. Kubitzki, C. Bayer. Berlin; Heidelberg: Springer, pp. 363–368. https://doi.org/10.1007/978-3-662-07255-4_42
  25. Gjokić G. 1896. Zur Anatomie der Früchte und des Samens von Viscum. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe. K1., Abt. 1. 105: 447–464. Available at: https://parasiticplants.siu.edu/Viscaceae/Gjokic1896German.pdf
  26. Godschalk S.K.B. 1983. The morphology of some South African mistletoe fruits. South African Journal of Botany, 2(1): 52–56. https://doi.org/10.1016/S0022-4618(16)30145-0
  27. Grazi Von G., Urech K. 1981. Einige morphologische Merkmale der Mistelheere (Viscum album L.) und deren taxonomische Bedeutung. Beiträge zur Biologie der Pflanzen, 56: 293–306.
  28. Greenberg A.K., Donoghue M.J. 2011. Molecular systematics and character evolution in Caryophyllaceae. Taxon, 60(6): 1637–1652. https://doi.org/10.1002/tax.606009
  29. Hartmann H.E.K. 1993. Aizoaceae. In: The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid Families. Eds K. Kubitzki, J.G. Rohwer, V. Bittrich. Berlin; Heidelberg: Springer, pp. 37–69.
  30. Kaden N.N. 1965. The fruit types of plants inhabiting the middle zone of the European part of the USSR. Botanicheskii Zhurnal, 50(6): 775–787.
  31. Krasylenko Y.A., Janošíková K., Kukushkin O.V. 2017. Juniper dwarf mistletoe (Arceuthobium oxycedri) in the Crimean Peninsula: novel insights into its morphology, hosts, and distribution. Botany, 95: 897–911. http://dx.doi.org/10.1139/cjb-2016-0289
  32. Krasylenko Yu.A., Gleb R.Yu., Volutsa O.D. 2019. Loranthus europaeus (Loranthaceae) in Ukraine: an overview of distribution patterns and hosts. Ukrainian Botanical Journal, 76(5): 406–417. https://doi.org/10.15407/ukrbotj76.05.406
  33. Kubitzki K. 1993. Plumbaginaceae. In: The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid Families. Eds K. Kubitzki, J.G. Rohwer, V. Bittrich. Berlin; Heidelberg: Springer, pp. 523–530.
  34. Kubitzki K. 2003a. Droseraceae. In: The families and genera of vascular plants. Vol. 5. Flowering plants. Dicotyledons: Malvales, Capparales and non-betalain Caryophyllales. Eds K. Kubitzki, C. Bayer. Berlin; Heidelberg: Springer, pp. 198–202. https://doi.org/10.1007/978-3-662-07255-4_21
  35. Kubitzki K. 2003b. Frankeniaceae. In: The families and genera of vascular plants. Vol. 5. Flowering plants. Dicotyledons: Malvales, Capparales and non-betalain Caryophyllales. Eds K. Kubitzki, C. Bayer. Berlin; Heidelberg: Springer, pp. 209–212. https://doi.org/10.1007/978-3-662-07255-4_24
  36. Kühn U. 1993. Chenopodiaceae. In: The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid Families. Eds K. Kubitzki, J.G. Rohwer, V. Bittrich. Berlin; Heidelberg: Springer, pp. 253–280.
  37. Kuijt J., Hansen B. 2015a. Fruits, seeds and seedlings. In: The Families and Genera of Vascular Plants. Vol. 12. Flowering Plants. Eudicots. Santalales, Balanophorales. Eds J. Kuijt, B. Hansen. Cham; Heidelberg: Springer. pp. 21–23. https://doi.org/10.1007/978-3-319-09296-6_4
  38. Kuijt J., Hansen B. 2015b. Loranthaceae. In: The Families and Genera of Vascular Plants. Vol. 12. Flowering Plants. Eudicots. Santalales, Balanophorales. Eds J. Kuijt, B. Hansen. Cham; Heidelberg: Springer, pp. 73–119. https://doi.org/10.1007/978-3-319-09296-6_14
  39. Kuijt J., Hansen B. 2015c. Santalaceae. In: The Families and Genera of Vascular Plants. Vol. 12. Flowering Plants. Eudicots. Santalales, Balanophorales. Eds J. Kuijt, B. Hansen. Cham; Heidelberg: Springer, pp. 143–165. https://doi.org/10.1007/978-3-319-09296-6_19
  40. Kuijt J., Hansen B. 2015d. Viscaceae. In: The Families and Genera of Vascular Plants. Vol. 12. Flowering Plants. Eudicots. Santalales, Balanophorales. Eds J. Kuijt, B. Hansen. Cham; Heidelberg: Springer, pp. 169–185. https://doi.org/10.1007/978-3-319-09296-6_21
  41. Leins P., Erbar C. 2010. Flower and fruit: Morphology, ontogeny, phylogeny, function and ecology. Stuttgart: Schweizerbart, 439 pp.
  42. Levina R.E. 1957. Modes of dispersal of fruits and seeds. Moscow: Moscow State University, 358 pp.
  43. Lorts C.M., Briggeman T., Sang T. 2008. Evolution of fruit types and seed dispersal: A phylogenetic and ecological snapshot. Journal of Systematics and Evolution, 46(3): 396–404. https://doi.org/10.3724/SP.J.1002.2008.08039
  44. Maddala S., Aluri J.S.R. 2019. Pollination ecology of the species Mollugo cerviana (L.) Ser. (Molluginaceae). Transylvanian Review of Systematical and Ecological Research, 21(2): 13–22. https://doi.org/10.2478/trser-2019-0009
  45. Morales-Briones D.F., Kadereit G., Tefarikis D.T., Moore M.J., Smith S.A., Brockington S.F., Timoneda A., Yim W.C., Cushman J.C., Yang Y. 2021. Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae s. l. Systematic Biology, 70(2): 219–235. http://doi.org/10.1093/sysbio/syaa066
  46. Mosyakin S.L. 2013. Families and orders of angiosperms of the flora of Ukraine: a pragmatic classification and placement in the phylogenetic system. Ukrainian Botanical Journal, 70(3): 289–307. https://doi.org/10.15407/ukrbotj70.03.289
  47. Mosyakin S.L., Fedoronchuk M.M. 1999. Vascular plants of Ukraine. A nomenclatural checklist. Kyiv, M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, xxiii + 345 pp.
  48. Mosyakin S.L., Mosyakin A.S. 2021. Lockdown botany 2020: some noteworthy records of alien plants in Kyiv City and Kyiv Region. Ukrainian Botanical Journal, 78(2): 96–111. https://doi.org/10.15407/ukrbotj78.02.096
  49. Odintsova A. 2016. Loculicidal dehiscence of superior and inferior capsular fruits in Myrtales. Studia Biologica, 10(3–4): 129–140. https://doi.org/10.30970/sbi.1003.504
  50. Odintsova A.V. 2022. Morphogenesis of fruit as a subject matter for the carpological studies. Ukrainian Botanical Journal, 79(3): 169–183. https://doi.org/10.15407/ukrbotj79.03.169
  51. Odintsova A.V. 2023a. Morphological and taxonomical treatments of fruits in the subclass Rosidae Takht. of the flora of Ukraine. Studia Biologica, 17(2): 123–152. https://doi.org/10.30970/sbi.1702.715
  52. Odintsova A. 2023b. Morphological fruit types in the monocots of the flora of Ukraine. In: Status and biodiversity of the ecosystems of Shatskyi National Nature Park and other protected areas: Proceedings of the all-Ukrainian scientific conference (Lviv-Shatsk, 7–10 September, 2023). Eds Y.V. Tsaryk et al., Lviv: SPOLOM, pp. 56–59.
  53. Odintsova A.V., Fishchuk O.S., Scrypec K.I., Danylyk I.M. 2021. Systematic treatment of morphological fruit types in plants of the class Liliopsida of the flora of Ukraine. Regulatory Mechanisms in Biosystems, 12(3): 375–382. https://doi.org//10.15421/022151
  54. Odintsova A., Fishchuk O., Danylyk I. 2022. Evolutionary and ecological estimation of fruit structure in monocotyledonous plants of the flora of Ukraine. Studia Biologica, 16(3): 83–100. https://doi.org/10.30970/sbi.1603.688
  55. Oyama S.O., Souza L.A., Muneratto J.C., Albiero A.L.M. 2010. Morphological and anatomical features of the flowers and fruits during the development of Chamissoa altissima (Jacq.) Kunth (Amaranthaceae). Brazilian Archives of Biology and Technology, 53(6): 1425–1432. https://doi.org/10.1590/S1516-89132010000600019
  56. Pax F. 1889. Plumbaginaceae. In: Die natürlichen Pflanzenfamilien. T. 4, Abt. 1. Eds H.G.A. Engler, K.A.E. Prantl. Leipzig: Engelman, pp. 116–125. https://doi.org/10.5962/bhl.title.4635
  57. Pijl L. van der. 1982. Principles of dispersal in higher plants. 3nd ed., Berlin, Heidelberg; New York: Springer, 215 pp. https://doi.org/10.1007/978-3-642-87925-8
  58. Polli A., Souza L.A., Almeida O.J.G. 2016. Structural development of the fruits and seeds in three mistletoe species of Phoradendron (Visceae: Santalaceae). Rodriguesia, 67(3): 649–659. https://doi.org/10.1590/2175-7860201667309
  59. Rohweder O. 1965. Centrospermen-Studien 2. Entwicklung und morphologische Deutung Gynoeciums bei Phytolacca. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 84: 509–526.
  60. Rohwer J.G. 1993. Phytolaccaceae. In: The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid Families. Eds K. Kubitzki, J.G. Rohwer, V. Bittrich. Berlin; Heidelberg: Springer, pp. 506–515. https://doi.org/10.1007/978-3-662-02899-5_59
  61. Ronse De Craene L.P. 2013. Reevaluation of the perianth and androecium in Caryophyllales: implications for flower evolution. Plant Systematics and Evolution, 299: 1599–1636. https://doi.org/10.1007/s00606-013-0910-y
  62. Ronse De Craene L.P. 2021. Gynoecium structure and development in core Caryophyllales: a matter of proportions. Botanical Journal of the Linnean Society, 195(3): 437–466. https://doi.org/10.1093/botlinnean/boaa048
  63. Ronse De Craene L.P., Vanvinckenroye P., Smets E.F. 1997. A study of floral morphological diversity in Phytolacca (Phytolaccaceae) based on early floral ontogeny. International Journal of Plant Sciences, 158(1): 57–72. https://doi.org/10.1086/297414
  64. Rosas-Reinhold I., Piñeyro-Nelson A., Rosas U., Arias S. 2021. Blurring the boundaries between a branch and a flower: Potential developmental venues in Cactaceae. Plants, 10: 1134. https://doi.org/10.3390/plants10061134
  65. Roth I. 1977. Fruits of Angiosperms. In: Encyclopedia of Plant Anatomy. Vol. 10, part 1. Eds W. Zimmermann, S. Carlquist, P. Ozenda, H.D. Wulff. Berlin: Borntraeger, xvi + 675 pp.
  66. Sattler R., Lacroix C. 1988. Development and evolution of basal cauline placentation: Basella rubra. American Journal of Botany, 75(6): 918–927. https://doi.org/10.2307/2444012
  67. Sattler R., Perlin L. 1982. Floral development of Bougainvillea spectabilis Willd., Boerhaavia diffusa L. and Mirabilis jalapa L. (Nyctaginaceae). Botanical Journal of the Linnean Society, 84(3): 161–182. https://doi.org/10.1111/j.1095-8339.1982.tb00532.x
  68. Shivaprakash K.N., Bawa K.S. 2022. The evolution of placentation in flowering plants: a possible role for kin selection. Frontiers in Ecology and Evolution, 10: 784077. https://doi.org/10.3389/fevo.2022.784077
  69. Sperling C.R., Bittrich V. 1993. Basellaceae. In: The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid Families. Eds K. Kubitzki, J.G. Rohwer, V. Bittrich. Berlin; Heidelberg: Springer, pp. 143–146. https://doi.org/10.1007/978-3-662-02899-5_13
  70. Spjut R.W. 1994. A systematic treatment of fruit types. Memoirs of the New York Botanical Garden, 70: 1–182. Available at: http://www.worldbotanical.com/fruit_types.htm
  71. Stevens P.F. (2001–onwards). Angiosperm phylogeny website. Version 14, July 2017 [and more or less continuously updated since]. Available at: http://www.mobot.org/MOBOT/research/APweb/ (Accessed 8 July 2024).
  72. Sulakshana M., Raju A.J.S. 2018. Floral biology and pollination of carpet weeds, Glinus lotoides L. and Glinus oppositifolius (L.) Aug. DC. (Molluginaceae). Anales de Biologia, 40: 103–114. https://doi.org/10.6018/analesbio.40.12
  73. Takhtajan A. 2009. Flowering Plants. 2nd ed. Dordrecht: Springer, 871 pp. https://doi.org/10.1007/978-1-4020-9609-9
  74. Teryokhin E.S. 1977. Parasitic flowering plants: evolution of ontogenesis and way of life. Leningrad: Nauka, 220 pp.
  75. Townsend C. C. 1993. Amaranthaceae. In: The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid Families. Eds K. Kubitzki, J.G. Rohwer, V. Bittrich. Berlin; Heidelberg: Springer, pp. 70–91.
  76. Vanvinckenroye P., Cresens E., Ronse De Craene L.P., Smets E. 1993. A comparative floral developmental study in Pisonia, Bougainvillea and Mirabilis (Nyctaginaceae) with special emphasis on the gynoecium and floral nectaries. Bulletin du Jardin Botanique National de Belgique, 62(1/4): 69–96. https://doi.org/10.2307/3668267
  77. Volkens G. 1893. Chenopodiaceae. In: Die natürlichen Pflanzenfamilien. T. 3, Abt. 1a. Eds H.G.A. Engler, K.A.E. Prantl. Leipzig: Engelman, pp. 36–91. https://doi.org/10.5962/bhl.title.4635
  78. Walker J.F., Yang Y., Feng T., Timoneda A., Mikenas J., Hutchison V., Edwards C., Wang N., Ahluwalia S., Olivieri J., Walker-Hale N., Majure L.C., Puente R., Kadereit G., Lauterbach M., Eggli U., Flores-Olvera H., Ochoterena H., Brockington S.F., Moore M.J., Smith S.A. 2018. From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales. American Journal of Botany, 105(3): 446–462. https://doi.org/10.1002/ajb2.1069
  79. Xiang Y., Zhang T., Zhao Y., Dong H., Chen H., Hu Y., Huang C.-H., Xiang J., Ma H. 2024. Angiosperm-wide analysis of fruit and ovary evolution aided by a newnuclear phylogeny supports association of the same ovarytype with both dry and fleshy fruits. Journal of Integrative Plant Biology, 66(2): 228–251. https://doi.org/10.1111/jipb.13618
  80. Yao G., Jin J.-J., Li H.-T., Yang J.-B., Mandala V.S., Croley M., Mostow R., Douglas N.A., Chase M.W., Christenhuszh M.J.M., Soltis D.E., Soltis P.S., Smith S.A., Brockington S.F., Moore M.J., Yi T.-S., Li D.-Z. 2019. Plastid phylogenomic insights into the evolution of Caryophyllales. Molecular Phylogenetics and Evolution, 134: 74–86. https://doi.org/10.1016/j.ympev.2018.12.023
  81. Zeng L., Zhang N., Zhang Q., Endress P.K., Huang J., Ma H. 2017. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets. New Phytologist, 214: 1338–1354. https://doi.org/10.1111/nph.14503
  82. Zheng H.C., Lu A.M., Hu Z.H. 2015. Floral organogenesis and ring meristem in Phytolacca. American Journal of Plant Sciences, 6(3): 445–455. Article ID: 54218. https://doi.org/10.4236/ajps.2015.63050