ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 6 of 6
Up
Ukr. Bot. J. 2024, 81(6): 443–453
https://doi.org/10.15407/ukrbotj81.06.443
Biotechnology, Physiology and Biochemistry

Impact of exogenous zeatin on the growth, pigment complex and capacity of sporophytes of Salvinia natans (Salviniaceae) for biological extraction of zinc from the water

Kosakivska I.V., Vasyuk V.A., Shcherbatiuk M.M., Voytenko L.V., Romanenko K.O.
Abstract

The response of plants to heavy metals involves phytohormones, particularly cytokinins, with zeatin being one of the active forms. Exogenous phytohormones are believed to induce plant resistance to heavy metals and enhance phytoextraction. We investigated the impact of exogenous zeatin on the morpho-physiological characteristics of young and mature sporophytes of Salvinia natans and their ability to extract zinc ions from the aquatic environment. It has been shown that zeatin mitigated the adverse effect of zinc sulfate on dry weight accumulation, but did not alleviate its negative impact on fresh weight accumulation in both young and mature sporophytes. During intensive growth and sori formation and spore maturation stages under zinc loading, exogenous zeatin (at 10–6 M concentration) led to 40% and 50% increase in the dry weight of young and mature sporophytes, respectively. In the presence of zinc sulfate, the total chlorophyll content decreased by 23% in the fronds of young sporophytes and by 44% in the fronds of mature sporophytes, while total carotenoids decreased by 21% in both cases. Zeatin addition alleviated the negative impact of the metal on the pigment complex in young sporophyte fronds but exacerbated it in mature sporophyte fronds. The pigment complex of the sporophyte was more susceptible to metal action during sori formation and spore maturation, resulting in frond browning and pronounced chlorosis. However, chlorosis was less intense and localized upon zeatin addition. The capacity of S. natans sporophytes to extract zinc ions from the aqueous medium was demonstrated, with zinc concentration decreasing by over tenfold from 10 mg·L–1 to 0.6 mg·L–1after 14 days of cultivation. The application of zeatin did not affect the efficiency of zinc ions extraction from water.

Keywords: biological extraction, growth indices, pigments, Salvinia natans, zeatin, zinc

Full text: PDF (Eng) 2.51M

References
  1. Balafrej H., Bogusz D., Triqui Z.A., Guedira A., Bendaou N., Smouni A., Fahr M. 2020. Zinc hyperaccumulation in plants: A review. Plants (Basel), 9(5): 562. https://doi.org/10.3390/plants9050562
  2. Beyer W.N., Green C.E., Beyer M., Chaney R.L. 2013. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting. Environmental Pollution, 179: 167–176. https://doi.org/10.1016/j.envpol.2013.04.013
  3. Bielen A., Remans T., Vangronsveld J., Cuypers A. 2013. The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions. International Journal of Molecular Sciences, 14: 6382–6413. https://doi.org/10.3390/ijms14036382
  4. Cassina L., Tassi E., Morelli E., Giorgetti L., Remorini D., Chaney R.L., Barbafieri M. 2011. Exogenous cytokinin treatments of an Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction. International Journal of Phytoremediation, 13: 90–101. https://doi.org/10.1080/15226514.2011.568538
  5. Cui R., Kwak J.I., An Y.J. 2022. Salvinia natans microplate assay: A simple and efficient method for evaluating aquatic toxicity. The Marine Pollution Bulletin, 185: 114274. https://doi.org/10.1016/j.marpolbul.2022.114274
  6. Dhir B., Srivastava S. 2011. Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecological Engeneering, 37: 893e896. https://doi.org/10.1016/j.ecoleng.2011.01.007
  7. Dhir B., Srivastava S. 2012. Disposal of metal treated Salvinia biomass in soil and its effect on growth and photosynthetic efficiency of wheat. International Journal of Phytoremediation, 14: 24e34. https://doi.org/10.1080/15226514.2010.532180
  8. Dhir B., Srivastava S. 2013. Heavy metal tolerance in metal hyperaccumulator plant, Salvinia natans. Bulletin of Environmental Contamination and Toxicology, 90: 720e724. https://doi.org/10.1007/s00128-013-0988-5
  9. Dhir B., Sharmila P., Saradhi P.P. 2008. Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater. Brazilian Journal of Plant Physiology, 20: 61–70. https://doi.org/10.1590/S1677-04202008000100007
  10. Dhir B., Sharmila P., Saradhi P.P., Sharma S., Kumar R., Mehta D. 2011. Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicology and Environmental Safety, 74(6): 1678–1684. https://doi.org/10.1016/j.ecoenv.2011.05.009
  11. Dolui D., Saha I., Adak M.K. 2021. 2, 4-D removal efficiency of Salvinia natans L. and its tolerance to oxidative stresses through glutathione metabolism under induction of light and darkness. Ecotoxicology and Environmental Safety, 208: 111708. https://doi.org/10.1016/j.ecoenv.2020.111708
  12. Dolui D., Hasanuzzaman M., Saha I., Ghosh A., Adak M.K. 2022. Amelioration of sodium and arsenic toxicity in Salvinia natans L. with 2,4-D priming through physiological responses. Environmental Science and Pollution Research, 29: 9232–9247. https://doi.org/10.1007/s11356-021-16246-7
  13. Ebbs S.D., Bradfield S.J., Kumar P., White J.C., Musante C., Ma X. 2015. Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environmental Science: Nano, 3: 114–126. https://doi.org/10.1039/C5EN00161G
  14. Gomes S.M., De S., De Lima V.L.A., De Souza A.P., Do Nascimento J.J.V.R., Do Nascimento E.S. 2014. Chloroplast pigments as indicators of lead stress. Agricultural Engineering, 34: 877–884. https://doi.org/10.1590/S0100-69162014000500007
  15. Hafeez B., Khanif Y.M., Saleem M. 2013. Role of zinc in plant nutrition. American Journal of Experimental Agriculture, 3(2): 374–391. https://doi.org/10.9734/AJEA/2013/2746
  16. Holm G. 1954. Chlorophyll mutations in barley. Acta Agriculturae Scandinavica, 4(1): 457–471. https://doi.org/10.1080/00015125409439955
  17. Hołtra A., Zamorska-Wojdyła D. 2014. Bioaccumulation capacities of copper (II) ions in Salvinia natans. Environment Protection Engineering, 40(4): 41–51. https://doi.org/10.37190/EPE140404
  18. Hönig M., Plíhalová L., Husičková A., Nisler J., Doležal K. 2018. Role of cytokinins in senescence, antioxidant defence and photosynthesis. International Journal of Molecular Science, 19(12): 4045. https://doi.org/10.3390/ijms19124045
  19. Hu C., Liu X., Li X., Zhao Y., 2014. Evaluation of growth and biochemical indicators of Salvinia natans exposed to zinc oxide nanoparticles and zinc accumulation in plants. Environmental Science and Pollution Research, 21: 732e739. https://doi.org/10.1007/s11356-013-1970-9
  20. Jiang X., Zhu S., Wu Y., Huai H. 2009. The effects of cooking oil fume condensates (COFCs) on the vegetative growth of Salvinia natans (L.) All. Journal of Hazardous Materials, 172(1): https://doi.org/10.1016/j.jhazmat.2009.07.001
  21. Khan M.I.R., Khan N.A. 2014. Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma, 251(5): 1007–1019. https://doi.org/10.1007/s00709-014-0610-7
  22. Kosakivska I.V., Babenko L.M., Shcherbatiuk M.M., Vedenicheva N.P., Voytenko L.V., Vasyuk V.A. 2016. Phytohormones during growth and development of Polypodiophyta. Advances in Biology & Earth Sciences, 1(1): 26–44.
  23. Kosakivska I.V., Shcherbatiuk M.M., Babenko L.M., Polishchuk O.V. 2018. Characteristics of photosynthetic apparatus of aquatic fern Salvinia natans floating and submerged fronds. Advances in Biology & Earth Sciences, 3(1): 13–26. Available at: http://jomardpublishing.com/UploadFiles/Files/journals/ABES/V3N1/KasakivskaI.pdf
  24. Kosakivska I.V., Vedenicheva N.P., Shcherbatiuk M.M., Voytenko L.V., Vasyuk V.A. 2022. Water ferns of Salviniaceae family in phytoremediation and phytoindication of contaminated water. Biotechnologia Acta, 15(5): 5–23. https://doi.org/10.15407/biotech15.05.005
  25. Kosakivska I.V., Vedenicheva N.P., Voytenko L.V., Vasyuk V.A., Shcherbatiuk M.M. 2023. Phytohormones in the regulation of growth and development of water ferns of Salviniaceae family: a review. Studia Biologica, 17(3): 189–210. https://doi.org/10.30970/sbi.1703.721
  26. Kosakivska I.V., Vedenicheva N.P., Vasyuk V.A., Shcherbatiuk M.M., Voytenko L.V., Romanenko K.O. 2024. The influence of exogenous phytohormones and zinc sulfate on the morphophysiological characteristics of the aquatic fern Salvinia natans (Salviniaceae). Ukrainian Botanical Journal, 81(2): 167–180. https://doi.org/10.15407/ukrbotj81.02.167
  27. Laabassi A., Boudehane A. 2019. Wastewater treatment by floating macrophytes (Salvinia natans) under Algerian semi-arid climate. European Journal of Engineering and Natural Sciences, 3: 103–110. Available at: https://dergipark.org.tr/en/download/article-file/745631
  28. Leal-Alvarado D.A., Espadas-Gil F., Sáenz-Carbonell L., Talavera-May C., Santamaría J.M. 2016. Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure. Aquatic Toxicology, 171: 37–47. https://doi.org/10.1016/j.aquatox.2015.12.008
  29. Leblebici Z., Kar M., Yalçın, V. 2018. Comparative study of Cd, Pb, and Ni removal potential by Salvinia natans (L.) All. and Lemna minor L.: interactions with growth parameters. Romanian Biotechnological Letters, 23(1): 13235–13248. Available at: https://acikerisim.nevsehir.edu.tr/handle/20.500.11787/5030
  30. Loría K.C., Emiliani J., Bergara C.D., Herrero M.S., Salvatierra L.M., Pérez L.M. 2019. Effect of daily exposure to Pb-contaminated water on Salvinia biloba physiology and phytoremediation performance. Aquatic Toxicology, 210: 158–166. https://doi.org/10.1016/j.aquatox.2019.02.019
  31. Mandal C., Ghosh N., Saborni Maiti, Das K., Sudha Gupta, Dey N., Adak M.K. 2013. Antioxidative responses of Salvinia (Salvinia natans Linn.) to aluminium stress and it’s modulation by polyamine. Physiology and Molecular Biology of Plants, 19: 91–103. https://doi.org/10.1007/s12298-012-0144-4
  32. Mohebi Z., Nazari M. 2021. Phytoremediation of wastewater using aquatic plants, A review. Journal of Applied Research in Water and Wastewater, 8(1): 50–58 https://doi.org/10.22126/arww.2021.5920.1196
  33. Noulas C., Tziouvalekas M., Karyotis T. 2018. Zinc in soils, water and food crops. Journal of Trace Elements in Medicine and Biology, 49(1): 252–260. https://doi.org/10.1016/j.jtemb.2018.02.009
  34. Phetsombat S., Kruatrachue M., Pokethitiyook P., Upatham S. 2006. Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata. Journal of Environmental Biology, 27(4): 645–652. Available at: https://pubmed.ncbi.nlm.nih.gov/17405325/
  35. Phytohormonal system and structural-functional features of pteridophytes (Polypodiophyta). 2019. Ed I.V. Kosakivska. Kyiv: Nash Format. 250 p. Available at: https://www.botany.kiev.ua/doc/kosakivska.pdf
  36. Piotrowska-Niczyporuk A., Bajguz A., Kotowska U., Zambrzycka-Szelewa E., Sienkiewicz A. 2020. Auxins and cytokinins regulate phytohormone homeostasis and thiol-mediated detoxification in the green alga Acutodesmus obliquus exposed to lead stress. Scientific Reports, 10: 10193. https://doi.org/10.1038/s41598-020-67085-4
  37. Polechońska L., Klink A., Dambiec M. 2019.Trace element accumulation in Salvinia natans from areas of various land use types. Environmental Science and Pollution Research, 26(29): 30242–30251. https://doi.org/10.1007/s11356-019-06189-5
  38. Prado C., Ponce C.S., Pagano E., Prado F.E., Rosa M. 2016. Differential physiological responses of two Salvinia species to hexavalent chromium at a glance. Aquatic Toxicology, 175: 213–221. https://doi.org/10.1016/j.aquatox.2016.03.027
  39. Rai R., Agrawal M., Agrawal S.B. 2016. Impact of heavy metals on physiological processes of plants: With special reference to photosynthetic system. In: Plant Responses to Xenobiotics. Eds A. Singh, S. Prasad, R. Singh. Singapore: Springer. https://doi.org/10.1007/978-981-10-2860-1_6
  40. Sitarska M., Traczewska T., Filarowska W., Hołtra A., Zamorska-Wojdyła D., Hanus-Lorenz B. 2023. Phytoremediation of mercury from water by monocultures and mixed cultures pleustophytes. Journal of Water Process Engineering, 52: 103529. https://doi.org/10.1016/j.jwpe.2023.103529
  41. Siyar S., Sami S., Majeed A. 2020. Heavy metal stress in plants: Effects on nutrients and water uptake. In: Cellular and Molecular Phytotoxicity of Heavy Metals. Nanotechnology in the Life Sciences. Eds M. Faisal, Q. Saquib, A.A. Alatar, A.A. Al-Khedhairy. Cham: Springer. https://doi.org/10.1007/978-3-030-45975-8_6
  42. Syvash O.O., Zolotareva O.K. 2017. Regulation of chlorophyll degradation in plant tissues. Biotechnologia Acta, 10(3): 20–30. https://doi.org/10.15407/biotech10.03.020
  43. Tassi E., Pouget J., Petruzzelli G., Barbafieri M. 2008. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere, 71: 66–73. https://doi.org/10.1016/j.chemosphere.2007.10.027
  44. Török A.I., Moldovan A., Senila L., Kovacs E., Resz M.-A., Senila M., Cadar O., Tanaselia C., Levei E.A. 2023. Impact of low lithium concentrations on the fatty acids and elemental composition of Salvinia natans. Molecules, 28: 5347. https://doi.org/10.3390/molecules28145347
  45. Vedenicheva N.P., Kosakivska I.V. 2017. Cytokinins as regulators of plant ontogenesis under different growth conditions. Kyiv: Nash Format, 202 pp. Available at: https://www.botany.kiev.ua/doc/kos_ved.pdf
  46. von Wettstein D. 1957. Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. Experimental Cell Research, 12(3): 427–506. https://doi.org/10.1016/0014-4827(57)90165-9
  47. Wang H., Cui S., Wu D., Yang X., Wang H., Wang Z. 2021. Effects of kinetin on arsenic speciation and antioxidative enzymes in fronds of the arsenic hyperaccumulator Pteris cretica var. nervosa and non-hyperaccumulator Pteris ensiformis. Environmental and Experimental Botany, 191, 104622. https://doi.org/10.1016/j.envexpbot.2021.104622
  48. Zhang X., Yang X., Wang H., Li Q., Wang H., Li Y. 2017. A significant positive correlation between endogenous trans-zeatin content and total arsenic in arsenic hyperaccumulator Pteris cretica var. nervosa. Ecotoxicology and Environmental Safety, 138: 199–205. https://doi.org/10.1016/j.ecoenv.2016.12.031
  49. Zhao H., Wu L., Chai T., Zhang Y., Tan J., Ma S. 2012. The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana. Journal of Plant Physiology, 169(13): 1243–1252. https://doi.org/10.1016/j.jplph.2012.04.016