ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 5 of 5
Up
Ukr. Bot. J. 2024, 81(4): 290–304
https://doi.org/10.15407/ukrbotj81.04.290
Biotechnology, Physiology and Biochemistry

Increasing germination and antioxidant activity of aged wheat and triticale grains by priming with gamma-aminobutyric acid

Shakhov I.V. 1,2, Kokorev A.I. 1, Yastreb T.O. 1, Dmitriev A.P. 3, Kolupaev Yu.E. 1,2,4
Abstract

During storage, elevated temperature and humidity cause accelerated aging and deterioration of seeds of various plant species, including important cultivated cereals, such as wheat and triticale. Germination of old seeds can be facilitated by seed priming with physiologically active substances that correct the pro/antioxidant balance and reduce the development of oxidative stress. Gamma-aminobutyric acid (GABA) is a regulatory compound with direct and indirect antioxidant effects. However, its effect on the germination of grains of cereals with low germination has not been extensively studied. The objective of this study was to examine the impact of GABA priming on the germination of aged grains of winter bread wheat (Triticum aestivum ‘Scorpion’) and winter triticale (×Triticosecale ‘Raritet’). the extent of oxidative stress and the state of the antioxidant system in seedlings. The results indicated that a three-hour treatment of grains with GABA at the optimal concentration (1 mM) resulted in a significant (18–21%) increase in germination energy and seed germination rate, as well as an increase in the biomass of shoots and roots of seedlings of both species. Concomitantly, the influence of GABA resulted in a reduction in oxidative stress markers, including the generation of superoxide anion radicals, hydrogen peroxide content, and the product of lipid peroxidation malondialdehyde. In wheat seedlings, the total content of phenolic compounds increased, while in triticale seedlings, the content of anthocyanins increased almost twofold. In seedlings derived from GABA-primed grains, catalase activity was also significantly elevated in the absence of notable alterations in superoxide dismutase and peroxidase activity. It was postulated that GABA priming is a promising approach for enhancing the germination of cereal seeds with diminished sowing quality.

Keywords: antioxidant system, gamma-aminobutyric acid, oxidative stress, priming, seed aging, seed germination, ×Triticosecale, Triticum aestivum

Full text: PDF (Ukr) 2.26M

References
  1. Afshari R.T., Seyyedi S.M. 2020. Exogenous γ-aminobutyric acid can alleviate the adverse effects of seed aging on fatty acids composition and heterotrophic seedling growth in medicinal pumpkin. Industrial Crops and Products, 153: 112605. https://doi.org/10.1016/j.indcrop.2020.112605
  2. Afzal I. 2023. Seed priming: what’s next? Seed Science and Technology, 51(3): 379–405. https://doi.org/10.15258/sst.2023.51.3.10
  3. Alquraan N., Al-Omari M., Alaa A. 2021. Effect of ash carbon nanofibers on GABA shunt pathway in germinating seeds of tomato (Lycopersicon esculentum Mill., c.v. Rohaba.) under salt stress. Turkish Journal of Botany, 45(2): 124–139. https://doi.org/10.3906/bot-2008-34
  4. Ashraf M.A., Rasheed R., Hussain I., Iqbal M., Riaz M., Arif M.S. 2019. Chemical priming for multiple stress tolerance. In: Priming and Pretreatment of Seeds and Seedlings. Eds M. Hasanuzzaman, V. Fotopoulos. Springer: Singapore, pp. 385–415. https://doi.org/10.1007/978-981-13-8625-1_19
  5. Babenko L.M., Kosakivska I.V., Romanenko K.O. 2022. Molecular mechanisms of N-acyl homoserine lactone signals perception by plants. Cell Biology International, 46(4): 523–534. https://doi.org/10.1002/cbin.11749
  6. Baranzelli J., Kringel D.H., Colussi R., Paiva F.F., Aranha B.C., de Miranda M.Z., da Rosa Zavareze E., Guerra D.A.R. 2018. Changes in enzymatic activity, technological quality and gamma-aminobutyric acid (GABA) content of wheat flour as affected by germination. LWT — Food Science and Technology, 90: 483–490. https://doi.org/10.1016/j.lwt.2017.12.070
  7. Bethke P.C., Gubler F., Jacobsen J.V., Jones R.L. 2004. Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta, 219: 847–855. https://doi.org/10.1007/s00425-004-1282-x
  8. Bhardwaj A., Sita K., Sehgal A., Bhandari K., Kumar S., Prasad P.V.V., Jha U., Kumar J., Siddique K.H.M., Nayyar H. 2021. Heat priming of lentil (Lens culinaris Medik.) seeds and foliar treatment with γ-aminobutyric acid (GABA), confers protection to reproductive function and yield traits under high-temperature stress environments. International Journal of Molecular Sciences, 22: 5825. https://doi.org/10.3390/ijms22115825
  9. Bobo-García G., Davidov-Pardo G., Arroqui C., Vírseda P., Marín-Arroyo M.R., Navarro M. 2015. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. Journal of the Science of Food and Agriculture, 95(1): 204–209. https://doi.org/10.1002/jsfa.6706
  10. Bor M., Turkan I. 2019. Is there a room for GABA in ROS and RNS signalling? Environmental and Experimental Botany, 161: 67–73. https://doi.org/10.1016/j.envexpbot.2019.02.015
  11. Bouché N., Fait A., Bouchez D., Møller S.G., Fromm H. 2003. Mitochondrial succinicsemialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proceedings of the National Academy of Sciences of the United States of America, 100(11): 6843–6848. https://doi.org/10.1073/pnas.1037532100
  12. Deng B., Yang K., Zhang Y., Li Z. 2017. Can antioxidant’s reactive oxygen species (ROS) scavenging capacity contribute to aged seed recovery? Contrasting effect of melatonin, ascorbate and glutathione on germination ability of aged maize seeds. Free Radical Research, 51(9–10): 765–771. https://doi.org/10.1080/10715762.2017.1375099
  13. Ellouzi H., Sghayar S., Abdelly C. 2017. H2O2 seed priming improves tolerance to salinity; drought and their combined effect more than mannitol in Cakile maritima when compared to Eutrema salsugineum. Journal of Plant Physiology, 210: 38–50. https://doi.org/10.1016/j.jplph.2016.11.014
  14. Galleschi L., Floris C. 1978. Metabolism of ageing seed: glutamic acid decarboxylase and succinic semialdehyde dehydrogenase activity of aged wheat embryos. Biochemie und Physiologie der Pflanzen, 173(2): 160–166. https://doi.org/10.1016/S0015-3796(17)30473-0
  15. Gelaw T.A., Sanan-Mishra N. 2024. Molecular priming with H2O2 and proline triggers antioxidant enzyme signals in maize seedlings during drought stress. Biochimica et Biophysica Acta, 1868(7): 130633. https://doi.org/10.1016/j.bbagen.2024.130633
  16. Jiang X., Li H., Song X. 2016. Seed priming with melatonin effects on seed germination and seedling growth in maize under salinity stress. Pakistan Journal of Botany, 48(4): 1345–1352.
  17. Jin X., Liu T., Xu J., Gao Z., Hu X. 2019. Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC Plant Biology, 19(1): 48. https://doi.org/10.1186/s12870-019-1660-y
  18. Karpets Y.V., Kolupaev Y.E., Yastreb T.O., Dmitriev O.P. 2012. Possible pathways of heat resistance induction in plant cells by exogenous nitrogen oxide. Cytology & Genetics, 46(6): 354–359. https://doi.org/10.3103/S0095452712060059
  19. Kepczynski J., Cembrowska-Lech D., Sznigir P. 2017. Interplay between nitric oxide, ethylene, and gibberellic acid regulating the release of Amaranthus retroflexus seed dormancy. Acta Physiologiae Plantarum, 39: article 254. https://doi.org/10.1007/s11738-017-2550-2
  20. Kim J.M., To T.K., Matsui A., Tanoi K., Kobayashi N.I., Matsuda F., Habu Y., Ogawa D., Sakamotom T., Matsunaga S., Bashir K., Rasheed S., Ando M., Takeda H., Kawaura K., Kusano M., Fukushima A., Takaho A.E., Kuromori T., Ishida J., Morosawa T., Tanaka M., Torii C., Takebayashi Y., Sakakibara H., Ogihara Y., Saito K., Shinozaki K., Devoto A., Seki M. 2017. Acetate-mediated novel survival strategy against drought in plants. Nature Plants, 3: 17097. https://doi.org/10.1038/nplants.2017.97
  21. Kolupaev Yu.E., Karpets Yu.V. 2014. Reactive oxygen species and stress signaling in plants. Ukrainian Biochemical Journal, 86(4): 18–35. https://doi.org/10.15407/ubj86.04.018
  22. Kolupaev Yu.E., Horielova E.I., Yastreb T.O., Ryabchun N.I. 2020. State of antioxidant system in triticale seedlings at cold hardening of varieties of different frost resistance. Cereal Research Communications, 48(2): 165–171. https://doi.org/10.1007/s42976-020-00022-3
  23. Kolupaev Yu.E., Taraban D.A., Kokorev A.I., Yastreb T.O., Pysarenko V.M., Sherstiuk E., Karpets Yu.V. 2024a. Effect of melatonin and hydropriming on germination of aged triticale and rye seeds. Botanica, 30(1): 1–13. https://doi.org/10.35513/Botlit.2024.1.1
  24. Kolupaev Yu.E., Shakhov I.V., Kokorev A.I., Dyachenko A.I., Dmitriev A.P. 2024b. The role of reactive oxygen species and calcium ions in implementing the stress-protective effect of γ-aminobutyric acid on wheat seedlings under heat stress conditions. Cytology & Genetics, 58(2): 81–91. https://doi.org/10.3103/S0095452724020063
  25. Kolupaev Yu.E., Kokorev O.I., Shevchenko M.V., Marenych M.M., Kolomatska V.P. 2024c. Participation of γ-aminobutyric acid in cell signaling processes and plant adaptation to abiotic stressors. Studia Biologica, 18(1): 125–154. https://doi.org/10.30970/sbi.1801.752
  26. Kosakivska I.V., Vasyuk V.A., Voytenko L.V., Shcherbatiuk M.M. 2022a. Effect of priming with gibberellic acid on acorn germination and growth of plants of Quercus robur and Q. rubra (Fagaceae). Ukrainian Botanical Journal, 79(4): 254–266. https://doi.org/10.15407/ukrbotj79.04.254
  27. Kosakivska I.V., Vasyuk V.A., Voytenko L.V., Shcherbatiuk M.M., Babenko L.M., Romanenko K.O. 2022b. Effects of exogenous bacterial quorum-sensing signal molecule/messenger N-hexanoyl-L-homoserine lactone (C6-HSL) on acorn germination and plant growth of Quercus robur and Q. rubra (Fagaceae). Ukrainian Botanical Journal, 79(5): 329–338. https://doi.org/10.15407/ukrbotj79.05.329
  28. Kozeko L., Jurkonienė S., Jankovska-Bortkevič E. 2024. GABA as a regulator of plant growth and stress tolerance. In: Regulation of adaptive responses in plants. Eds T.O. Yastreb, Yu.E. Kolupaev, A.I. Yemets, Ya.B. Blume. New York: Nova Science Publishers, Inc., pp. 259–284. https://doi.org/10.52305/TXQB2084
  29. Kranner I., Minibayeva F.V., Beckett R.P., Seal C.E. 2010. What is stress? Concepts, definitions and applications in seed science. New Phytologist, 188(3): 655–673. https://doi.org/10.1111/j.1469-8137.2010.03461.x
  30. Kumar A., Choudhary A., Kaur H., Javed M., Mehta S. 2021. Plant performance and defensive role of γ-gamma amino butyric acid under environmental stress. In: Plant Performance Under Environmental Stress. Ed. A. Husen. Cham: Springer, pp. 277–299. https://doi.org/10.1007/978-3-030-78521-5_11
  31. Kurek K., Plitta-Michalak B., Ratajczak E. 2019. Reactive oxygen species as potential drivers of the seed aging process. Plants (Basel), 8(6): 174. https://doi.org/10.3390/plants8060174
  32. Liu H., Able A.J., Able J.A. 2022. Priming crops for the future: rewiring stress memory. Trends in Plant Science, 27(7): 699–716. https://doi.org/10.1016/j.tplants.2021.11.015
  33. Mao C., Zhu Y., Cheng H., Yan H., Zhao L., Tang J., Ma X., Mao P. 2018. Nitric Oxide regulates seedling growth and mitochondrial responses in aged oat seeds. International Journal of Molecular Sciences, 19(4): 1052. https://doi.org/10.3390/ijms19041052
  34. Martinek P., Skorpik M., Chrpova J., Schweiger J. 2013. Development of the new winter wheat variety Skorpion with blue grain. Czech Journal of Genetics and Plant Breeding, 49: 90–94. https://doi.org/10.17221/7/2013-CJGPB
  35. Neill S.O., Gould K.S. 2003. Anthocyanins in leaves: light attenuators or antioxidants? Functional Plant Biology, 30(8): 865. https://doi.org/10.1071/fp03118
  36. Nogués S., Baker N.R. 2000. Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. Journal of Experimental Botany, 51(348): 1309–1317. https://doi.org/10.1093/jxb/51.348.1309
  37. Paparella S., Araújo S.S., Rossi G., Wijayasinghe M., Carbonera D., Balestrazzi A. 2015. Seed priming: state of the art and new perspectives. Plant Cell Reports, 34(8): 1281–1293. https://doi.org/10.1007/s00299-015-1784-y
  38. Pirredda M., Fañanás Pueyo I., Oñate-Sánchez L., Mira S. 2024. Seed longevity and ageing: a review on physiological and genetic factors with an emphasis on hormonal regulation. Plants, 13(1): 41. https://doi.org/10.3390/plants13010041
  39. Probert R., Adams J., Coneybeer J., Crawford A., Hay F. 2007. Seed quality for conservation is critically affected by pre-storage factors. Australian Journal of Botany, 55: 326–335. https://doi.org/10.1071/BT06046
  40. Rajjou L., Lovigny Y., Groot S.P.C., Belghaz M., Job C., Job. D. 2008. Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiology, 148: 620–641. https://doi.org/10.1104/pp.108.123141
  41. Sagisaka S. 1976. The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiology, 57: 308–309. https://doi.org/10.1104/pp.57.2.308
  42. Sako K., Nguyen M.H., Seki M. 2020. Advances in chemical priming to enhance abiotic stresstolerance in plants. Plant and Cell Physiology, 61(12): 1995–2003. https://doi.org/pcp/pcaa119
  43. Samarah N.H., Al-Quraan N.A., Al-Wraikat B.S. 2023. Ultrasonic treatment to enhance seed germination and vigour of wheat (Triticum durum) in association with γ-aminobutyric acid (GABA) shunt pathway. Functional Plant Biology, 50: 277–293. https://doi.org/10.1071/FP22211
  44. Scandalios J.G. 1997. Oxidative stress and the molecular biology of antioxidant defenses. 1st ed. New York: Cold Spring ­Harbor Laboratory Press, 890 pp.
  45. Sheng Y., Xiao H., Guo C., Wu H., Wang X. 2018. Effects of exogenous gamma-aminobutyric acid on α-amylase activity in the aleurone of barley seeds. Plant Physiology and Biochemistry, 127: 39–46. https://doi.org/10.1016/j.plaphy.2018.02.030
  46. Sheteiwy M.S., Shao H., Qi W., Hamoud Y.A., Shaghaleh H., Khan N.U., Yang R., Tang B. 2019. GABA-alleviated oxidative injury induced by salinity, osmotic stress and their combination by regulating cellular and molecular signals in rice. International Journal of Molecular Sciences, 20(22): 5709. https://doi.org/10.3390/ijms20225709
  47. Simlat M., Ptak A., Skrzypek E., Warcho M., Moraska E., Pirkowska E. 2018. Melatonin significantly influences seed germination and seedling growth of Stevia rebaudiana Bertoni. PeerJ, 6: e5009. https://doi.org/10.7717/peerj.5009
  48. Smirnoff N., Cumbes Q.J. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28: 1057–1060. https://doi.org/10.1016/0031-9422(89)80182-7
  49. Vedenicheva N., Futorna O., Shcherbatyuk M., Kosakivska I. 2022. Effect of seed priming with zeatin on Secale cereale L. growth and cytokinins homeostasis under hyperthermia. Journal of Crop Improvement, 36(5): 656–674. https://doi.org/10.1080/15427528.2021.2000909
  50. Waqas M., Korres N.E., Khan M.D., Nizami Al.-S., Deeba F., Ali I., Hussain H. 2019. Advances in the concept and methods of seed priming. In: Priming and Pretreatment of Seeds and Seedlings. Eds M. Hasanuzzaman, V. Fotopoulos. Singapore: Springer, pp. 11–41. https://doi.org/10.1007/978-981-13-8625-1_2
  51. Xia F., Cheng H., Chen L., Zhu H., Mao P., Wang M. 2020. Influence of exogenous ascorbic acid and glutathione priming on mitochondrial structural and functional systems to alleviate aging damage in oat seeds. BMC Plant Biology, 20(1): 104. https://doi.org/10.1186/s12870-020-2321-x
  52. Xu B., Sai N., Gilliham M. 2021. The emerging role of GABA as a transport regulator and physiological signal. Plant Physiology, 187(4): 2005–2016. https://doi.org/10.1093/plphys/kiab347
  53. Zhou Z.-H., Wang Y., Ye X.-Y., Li Z.-G. 2018. Signaling molecule hydrogen sulfide improves seed germination and seedling growth of maize (Zea mays L.) under high temperature by inducing antioxidant system and osmolyte biosynthesis. Frontiers in Plant Science, 9: 1288. https://doi.org/10.3389/fpls.2018.01288
  54. Zhang K., Zhang Y., Sun J., Meng J., Tao J. 2021. Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiology and Biochemistry, 158: 475–485. https://doi.org/10.1016/j.plaphy.2020.11.031
  55. Zhou M., Hassan M.J., Peng Y., Liu L., Liu W., Zhang Y., Li Z. 2021. γ-Aminobutyric acid (GABA) priming improves seed germination and seedling stress tolerance associated with enhanced antioxidant metabolism, DREB expression, and dehydrin accumulation in white clover under water stress. Frontiers in Plant Science, 12: 776939. https://doi.org/10.3389/fpls.2021.776939