ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 5 of 5
Up
Ukr. Bot. J. 2024, 81(3): 242–250
https://doi.org/10.15407/ukrbotj81.03.242
Biotechnology, Physiology and Biochemistry

Endogenous cytokinins in plants of Secale cereale (Poaceae) under the effects of soil drought

Vedenicheva N.P., Shcherbatiuk M.M., Kosakivska I.V.
Abstract

Due to ongoing global climate changes and anthropogenic stress, soil drought has emerged as a significant threat, hindering plant growth, development, and resulting in crop losses. While phytohormones play a vital role in the formation of stress resistance mechanisms, cytokinins, in particular, remain poorly understood in cultivated cereals. The objective of our study was to investigate the impact of soil drought on plant growth and the homeostasis of endogenous cytokinins in both the aerial parts and roots of winter rye (Secale cereale) during the initial stages of vegetation. We aimed to elucidate the relationship between growth processes and the balance of these phytohormones. The plants were cultivated in a phytochamber using sand culture, and drought stress was induced by withholding water from nine-day-old plants for a period of eight days. The shoots and roots of 17-day-old plants were collected when dehydrated plants reached the critical wilting point. The content of endogenous cytokinins was analyzed using HPLC-MS. Our findings revealed that the inhibition of shoot growth and root elongation in stressed plants coincided with a reduction in the content of trans-zeatin riboside. This observation suggests that trans-zeatin riboside acts as a growth regulator in winter rye under soil drought conditions. Moreover, we observed an elevation in the levels of trans-zeatin and isopentenyladenine in the shoots and roots of stressed rye plants, indicating the involvement of these hormones in the formation of a "protective anti-stress block." These results highlight the multifunctional activity of cytokinins and demonstrate their role in regulating various components of the water deficit response. Consequently, our study expands our understanding of the role of cytokinins in the development of stress resistance in cereals.

Keywords: adaptation, cytokinins, growth, Secale cereale, soil drought, stress

Full text: PDF (Ukr) 871K

References
  1. Alharby H., Alzahrani Y.M., Rady M. 2020. Seeds pretreatment with zeatins or maize grain-derived organic biostimulant improved hormonal contents, polyamine gene expression, and salinity and drought tolerance of wheat. International Journal of Agriculture and Biology, 24: 714–724. https://doi.org/10.17957/IJAB/15.1491
  2. Chen L., Zhao J., Song J., Jameson P.E. 2021. Cytokinin glucosyl transferases, key regulators of cytokinin homeostasis, have potential value for wheat improvement. Plant Biotechnology Journal, 19(5): 878–896. https://doi.org/10.1111/pbi.13595
  3. Chhaya Yadav B., Jogawat A., Gnanasekaran P., Kumari P., Lakra N., Lal S.K., Pawar J., Narayan O.P. 2021. An overview of recent advancement in phytohormones-mediated stress management and drought tolerance in crop plants. Plant Gene, 25: 100264. https://doi.org/10.1016/j.plgene.2020.100264
  4. Chu G., Chen T., Wang Z., Yang J., Zhang J. 2014. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Research, 162: 108–119. https://doi.org/10.1016/j.fcr.2013.11.006
  5. Cortleven A., Leuendorf J.E., Frank M., Pezzetta D., Bolt S., Schmülling T. 2019. Cytokinin action in response to abiotic and biotic stress in plants. Plant, Cell and Environment, 42: 998–1018. https://doi.org/10.1111/pce.13494
  6. Czyczyło-Mysza I., Myśków B. 2017. Analysis of the impact of drought on selected morphological, biochemical and physiological traits of rye inbred lines. Acta Physiologiae Plantarum, 39: 87. https://doi.org/10.1007/s11738-017-2385-x
  7. Du Y., Zhang Z., Gu Y., Li W., Wang W., Yuan X., Zhang Y., Yuan M., Du J., Zhao Q. 2023. Genome-wide identification of the soybean cytokinin oxidase/dehydrogenase gene family and its diverse roles in response to multiple abiotic stress. Frontiers in Plant Science, 14: 1163219. https://doi.org/10.3389/fpls.2023.1163219
  8. Farber M., Attia Z., Weiss D. 2016. Cytokinin activity increases stomatal density and transpiration rate in tomato. Journal of Experimental Botany, 67(22): 6351–6362. https://doi.org/10.1093/jxb/erw398
  9. Frébort I., Kowalska M., Hluska T., Frébortová J., Galuszka P. 2011. Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany, 62: 2431–2452. https://doi.org/10.1093/jxb/err004
  10. Gowda V.R.P., Henry A., Yamauchi A., Shashidhar H.E., Serraj R. 2011. Root biology and genetic improvement for drought avoidance in rice. Field Crops Research, 122(1): 1–13. https://doi.org/10.1016/j.fcr.2011.03.001
  11. Hai N.N., Chuong N.N., Tu N.H.C., Kisiala A., Hoang X.L.T., Thao N.P. 2020. Role and Regulation of Cytokinins in Plant Response to Drought Stress. Plants (Basel), 9(4): 422. https://doi.org/10.3390/plants9040422
  12. Han H., Tian Z., Fan Y., Cui Y., Cai J., Jiang D., Cao W., Dai T. 2015. Water-deficit treatment followed by re-watering stimulates seminal root growth associated with hormone balance and photosynthesis in wheat (Triticum aestivum L.) seedlings. Plant Growth Regulation, 77: 201–210. https://doi.org/10.1007/s10725-015-0053-y
  13. Hönig M., Plíhalová L., Husičková A., Nisler J., Doležal K. 2018. Role of cytokinins in senescence, antioxidant defence and photosynthesis. International Journal of Molecular Sciences, 19: 4045. https://doi.org/10.3390/ijms19124045
  14. Hübner M., Wilde P., Schmiedchen B., Dopierala P., Gowda M., Reif J.C., Miedaner T. 2013. Hybrid rye performance under natural drought stress in Europe. Theoretial and Applied Genetics, 126(2): 475–82. https://doi.org/10.1007/s00122-012-1994-4
  15. Hudeček M., Nožková V., Plíhalová L., Plíhal O. 2023. Plant hormone cytokinin at the crossroads of stress priming and control of photosynthesis. Frontiers in Plant Science, 13: 1103088. https://doi.org/10.3389/fpls.2022.1103088
  16. Hura T., Dziurka M., Hura K., Ostrowska A., Dziurka K., Gadzinowska J. 2017. Wheat and rye genome confer specific phytohormone profile features and interplay under water stress in two phenotypes of triticale. Plant Physiology and Biochemistry, 118: 494–509. https://doi.org/10.1016/j.plaphy.2017.07.016
  17. Islam M.R., Islam M.S., Akter N., Mohi-Ud-Din M., Mostofa M.G. 2022. Foliar application of cytokinin modulates gas exchange features, water relation and biochemical responses to improve growth performance of maize under drought stress. Phyton, 91: 633–649. https://doi.org/10.32604/phyton.2022.018074
  18. Jameson P.E. 2023. Zeatin: The 60th anniversary of its identification. Plant Physiology, 192(1): 34–55. https://doi.org/10.1093/plphys/kiad094
  19. Jing H., Strader L.C. 2019. Interplay of auxin and cytokinin in lateral root development. International Journal of Molecular Sciences, 20: 486. https://doi.org/10.3390/ijms20030486
  20. Kapoor D., Bhardwaj S., Landi M., Sharma A., Ramakrishnan M., Sharma A. 2020. The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. Applied Sciences, 10(16): 5692. https://doi.org/10.3390/app10165692
  21. Kottmann L., Wilde P., Schittenhelm S. 2016. How do timing, duration, and intensity of drought stress affect the agronomic performance of winter rye? European Journal of Agronomy, 75: 25–32. https://doi.org/10.1016/j.eja.2015.12.010
  22. Kuppu S., Mishra N., Hu R., Sun L., Zhu X., Shen G., Zhang H. 2013. Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS ONE, 8(5): e64190. https://doi.org/10.1371/journal.pone.0064190
  23. Le D.T., Nishiyama R., Watanabe Y., Vankova R., Tanaka M., Seki M., Ham L.H., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.-S. P. 2012. Identification and Expression Analysis of Cytokinin Metabolic Genes in Soybean under Normal and Drought Conditions in Relation to Cytokinin Levels. PLoS ONE, 7(8): e42411. https://doi.org/10.1371/journal.pone.0042411
  24. Lee Z.H., Hirakawa T., Yamaguchi N., Ito T. 2019. The Roles of Plant Hormones and Their Interactions with Regulatory Genes in Determining Meristem Activity. International Journal of Molecular Sciences, 20(16): 4065. https://doi.org/10.3390/ijms20164065
  25. Liu Y., Zhang M., Meng Z., Wang B., Chen M. 2020. Research Progress on the Roles of Cytokinin in Plant Response to Stress. International Journal of Molecular Sciences. 21(18): 6574. https://doi.org/10.3390/ijms21186574
  26. Müller M., Munné-Bosch S. 2021. Hormonal impact on photosynthesis and photoprotection in plants. Plant Physiology, 185(4): 1500–1522. https://doi.org/10.1093/plphys/kiaa119
  27. Osakabe Y., Osakabe K., Shinozaki K., Tran L.-S.P. 2014. Responses of plants to water stress. Frontiers in Plant Science, 5: 86.
  28. Padilla Y.G., Gisbert-Mullor R., López-Galarza S., Albacete A., Martínez-Melgarejo P.A., Calatayud Á. 2023. Short-term water stress responses of grafted pepper plants are associated with changes in the hormonal balance. Frontiers in Plant Science, 14: 1170021. https://doi.org/10.3389/fpls.2023.1170021
  29. Prasad R. 2022. Cytokinin and Its Key Role to Enrich the Plant Nutrients and Growth Under Adverse Conditions — An Update. Frontiers in Genetics, 13: 883924. https://doi.org/10.3389/fgene.2022.883924
  30. Prerostova S., Dobrev P.I., Gaudinova A., Knirsch V., Körber N., Pieruschka R., Fiorani F., Brzobohatý B., Cerný M., Spichal L., Humplik J., Vanek T., Schurr U., Vankova R. 2018. Cytokinins: their impact on molecular and growth responses to drought stress and recovery in Arabidopsis. Frontiers in Plant Sciences, 9: 655. https://doi.org/10.3389/fpls.2018.00655
  31. Ramireddy E., Hosseini S.A., Eggert K., Gillandt S., Gnad H., von Wirén N., Schmülling T. 2018. Root engineering in barley: Increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance. Plant Physiology, 177: 1078–1095. https://doi.org/10.1104/pp.18.00199
  32. Reguera M., Peleg Z., Abdel-Tawab Y.M., Tumimbang E.B., Delatorre C.A., Blumwald E. 2013. Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiology, 163: 1609–1622.
  33. Sakakibara H. 2021. Cytokinin biosynthesis and transport for systemic nitrogen signaling. Plant Journal, 105: 421–430. https://doi.org/10.1111/tpj.15011
  34. Seleiman M.F., Al-Suhaibani N., Ali N., Akmal M., Alotaibi M., Refay Y., Dindaroglu T., Abdul-Wajid H.H., Battaglia M.L. 2012. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants (Basel), 10(2): 259. https://doi.org/10.3390/plants10020259
  35. Sharma A., Prakash S., Chattopadhyay D. 2022. Killing two birds with a single stone-genetic manipulation of cytokinin oxidase/dehydrogenase (CKX) genes for enhancing crop productivity and amelioration of drought stress response. Frontiers in Genetics, 13: 941595. https://doi.org/10.3389/fgene.2022.941595
  36. Sharma A., Landi M., Pugliesi C., Zheng B. 2023. Mechanisms of hormonal-mediated stress regulation in plants. Plant Gene, 34: 100417. https://doi.org/10.1016/j.plgene.2023.100417
  37. Todaka D., Zhao Y., Yoshida T., Kudo M., Kidokoro S., Mizoi J., Kodaira K.-S., Takebayashi Y., Kojima M., Sakakibara H., Toyooka K., Sato M., Fernie A.R., Shinozaki K., Yamaguchi-Shinozaki K. 2017. Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant Journal, 90: 61–78. https://doi.org/10.1111/tpj.13468
  38. Tran L.S., Urao T., Qin F., Maruyama K., Kakimoto T., Shinozaki K., Yamaguchi-Shinozaki K. 2007. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 104(51): 20623–20628. https://doi.org/10.1073/pnas.0706547105
  39. Urban M.O., Planchon S., Hoštičková I., Vanková R., Dobrev P., Renaut J., Klíma M., Vítámvás P. 2021. The Resistance of Oilseed Rape Microspore-Derived Embryos to Osmotic Stress Is Associated With the Accumulation of Energy Metabolism Proteins, Redox Homeostasis, Higher Abscisic Acid, and Cytokinin Contents. Frontiers in Plant Science, 12: 628167. https://doi.org/10.3389/fpls.2021.628167
  40. Vedenicheva N., Futorna O., Shcherbatyuk M., Kosakivska I. 2022a. Effect of seed priming with zeatin on Secale cereale L. growth and cytokinins homeostasis under hyperthermia. Journal of Crop Improvement, 36(5): 656–674, https://doi.org/10.1080/15427528.2021.2000909
  41. Vedenicheva N., Shcherbatyuk M., Kosakivska I. 2022b. Effect of low-temperature stress on the growth of plants of Secale cereale (Poaceae) and endogenous cytokinin content in roots and shoots. Ukrainian Botanical Journal, 79(3):184–192. https://doi.org/10.15407/ukrbotj79.03.184
  42. Vedenicheva N.P., Shcherbatyuk M.M., Kosakivska I.V. 2023. Cytokinin localization and dynamics in rye plants under chilling and kernel priming with zeatin. Plant Physiology and Genetics, 55(1): 74–89. https://doi.org/10.15407/frg2023.01.074
  43. Wrigley C., Bushuk W. 2017. Rye: Grain-Quality characteristics and management of quality requirements. In: Woodhead Publishing Series in Food Science, Technology and Nutrition, Cereal Grains. 2nd ed. Eds C. Wrigley, I. Batey, D. Miskelly. Cambridge: Woodhead Publishing (Elsevier, UK), pp. 153–178. https://doi.org/10.1016/B978-0-08-100719-8.00007-3
  44. Xu Y., Huang B. 2017. Transcriptional factors for stress signaling, oxidative protection, and protein modification in ipt-transgenic creeping bentgrass exposed to drought stress. Environmental and Experimental Botany, 144: 49–60. https://doi.org/10.1016/j.envexpbot.2017.10.004
  45. Xu Y., Burgess P., Zhang X., Huang B. 2016. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera. Journal of Experimental Botany, 67(6): 1979–1992. https://doi.org/10.1093/jxb/erw019