ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 7 of 7
Up
Ukr. Bot. J. 2024, 81(2): 167–180
https://doi.org/10.15407/ukrbotj81.02.167
Biotechnology, Physiology and Biochemistry

The influence of exogenous phytohormones and zinc sulfate on the morphophysiological characteristics of Salvinia natans (Salviniaceae)

I.V. Kosakivska, L.V. Voytenko, N.P. Vedenicheva, V.A. Vasyuk, M.M. Shcherbatiuk, K.O. Romanenko
Abstract

Hydrophytic ferns of the family Salviniaceae, such as those of the genus Salvinia, hold promise for application in water purification and bioassessment. The Salvinia species are known for their rapid growth, adaptability, resistance to adverse environmental conditions, and also their ability to adsorb pollutants. The manipulation of plant growth and development through the application of exogenous phytohormones is an effective technique. In laboratory settings, we investigated the impact of exogenous phytohormones and zinc sulfate on the morphophysiological characteristics of young sporophytes of Salvinia natans. During the phase of intensive growth, the addition of exogenous abscisic acid (ABA) at a concentration of 10−5 M to the growth medium inhibited the accumulation of biomass in S. natans sporophytes. However, gibberellic acid (GA3) and cytokinins (kinetin or zeatin) at a concentration of 10−6 M, along with indole-3-acetic acid (IAA) at a concentration of 10−5 M, induced a slight increase in biomass. In sporophytes of S. natans grown in a medium containing varying concentration of zinc sulfate (228, 114, 57, 28.5, and 14.25 mg of zinc per liter of water), sings of chlorosis in floating fronds were observed as early as the second day of cultivation, followed by symptoms of necrosis. There was a decrease in the content of photosynthetic pigments. Sporophyte biomass decreased, as zinc concentration increased, ranging from 9.6% to 51%. Simultaneous application of phytohormones with the highest concentration of zinc sulfate partially mitigated the adverse effects of the metal, reducing biomass degradation and sustaining sporophyte viability. Qualitative alterations in the fern phenotype were observed, highlighting the phytotoxicity of excessive zinc concentrations. This underscores the potential use of S. natans as a bioindicator for water pollution.

Keywords: growth indicators, phytohormones, pigments, Salvinia natans, zinc

Full text: PDF (Ukr) 2.73M

References
  1. Babenko L., Vasheka O., Shcherbatiuk M., Romanenko P., Voytenko L., Kosakivska I. 2019. Biometric characteristics and surface microstructure of vegetative and reproductive organs of heterosporous water fern Salvinia natans. Flora, 252: 44–50. https://doi.org/10.1016/j.flora.2019.02.006
  2. Balafrej H., Bogusz D., Triqui Z.A., Guedira A., Bendaou N., Smouni A., Fahr M. 2020. Zinc hyperaccumulation in plants: a review. Plants (Basel), 9(5): 562. https://doi.org/10.3390/plants9050562
  3. Bezsmertna O.O., Heluta V.P., Danylyk I.M., Orlov O.O., Kazarinova H.O., Janyuk M.A., Babytskiy A.I., Korotchenko I.A. 2020. Distribution of Salvinia natans (Salviniaceae, Polypodiopsida), a fern listed in the Red Data Book of Ukraine, within the country. Ukrainian Botanical Journal, 77(3): 173–188. https://doi.org/10.15407/ukrbotj77.03.173
  4. Beyer W.N., Green C.E., Beyer M., Chaney R.L. 2013. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting. Environmental Pollution, 179: 167–176. https://doi.org/10.1016/j.envpol.2013.04.013
  5. Bielen A., Remans T., Vangronsveld J., Cuypers A. 2013. The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions. International Journal of Molecular Sciences, 14: 6382–6413. https://doi.org/10.3390/ijms14036382
  6. Bücker-Neto L., Paiva A.L.S., Machado R.D., Arenhart R.A., Margis-Pinheiro M. 2017. Interactions between plant hormones and heavy metals responses. Genetics and Molecular Biology, 40(1), Supplement 1: 373–386. https://doi.org/10.1590/1678-4685-GMB-2016-0087
  7. Cassina L., Tassi E., Morelli E., Giorgetti L., Remorini D., Chaney R.L., Barbafieri M. 2011. Exogenous cytokinin treatments of an Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction. International Journal of Phytoremediation. 13: 90–101. https://doi.org/10.1080/15226514.2011.568538
  8. Chen Z., Liu Q., Chen S., Zhang S., Wang M., Munir M.A.M., Feng Y., He Z., Yang X. 2022. Roles of exogenous plant growth regulators on phytoextraction of Cd/Pb/Zn by Sedum alfredii Hance in contaminated soils. Environmental Pollution, 293: 118510. https://doi.org/10.1016/j.envpol.2021.118510
  9. Dhir B., Srivastava S. 2013. Heavy metal tolerance in metal hyperaccumulator plant, Salvinia natans. Bulletin of Environmental Contamination and Toxicology, 90(6): 720–724. https://doi.org/10.1007/s00128-013-0988-5
  10. Dhir B., Sharmila P., Saradhi P.P. 2008. Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater. Brazilian Journal of Plant Physiology, 20: 61–70.
  11. Dhir B., Sharmila P., Saradhi P.P., Sharma S., Kumar R., Mehta D. 2011. Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicology and Environmental Safety, 74(6): 1678–1684. https://doi.org/10.1016/j.ecoenv.2011.05.009
  12. Dolui D., Saha I., Adak M.K. 2021. 2,4-D removal efficiency of Salvinia natans L. and its tolerance to oxidative stresses through glutathione metabolism under induction of light and darkness. Ecotoxicology and Environmental Safety, 208: 111708. https://doi.org/10.1016/j.ecoenv.2020.111708
  13. Dubyna D.V. 2009. Salvinia natans. In: Red Data Book of Ukraine. Plant Kingdom. Ed. Ya.P. Didukh. Kyiv: Globalconsulting, p. 38.
  14. Dubyna D.V., Sheliag-Sosonko Yu.R., Zhmud O.I., Zhmud M.Ie., Dvoretskyi T.V., Dziuba T.P., Tymoshenko P.A. 2003. Dunaiskyi biosfernyi zapovidnyk. Roslynnyi svit. Kyiv: Fitosotsiotsentr, 448 p.
  15. Ebbs S.D., Bradfield S.J., Kumar P., White J.C., Musante C., Ma X. 2015. Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environmental Science: Nano, 3: 114–126. https://doi.org/10.1039/C5EN00161G
  16. El-Araby M.M.I., El-Shahate R.M., Eweda E.W., El-Berashi M.N. 2010. Enhancement of growth and endogenous phytohormones of Azolla pinnata in response to tryptophan. Journal of Applied Sciences Research, 6(12): 6598–6604.
  17. Favas P.J.C., Pratas J., Rodrigues N., D’Souza R., Varun M., Paul M.S. 2017. Metal(loid) accumulation in aquatic plants of a mining area: Potential for water quality biomonitoring and biogeochemical prospecting. Chemosphere, 194: 158–170. https://doi.org/10.1016/j.chemosphere.2017.11.139
  18. Gałka A., Szmeja J. 2013. Phenology of the aquatic fern Salvinia natans (L.) All. in the Vistula Delta in the context of climate warming. Limnologica, 43: 100–105. https://doi.org/10.1016/j.limno.2012.07.001
  19. Gaudet J.J., Koh D.V. 1968. Effect of various growth regulators on Salvinia rotundifolia in sterile culture. Bulletin of the Torrey Botanical Club, 95(1): 92–102. Available at: http://www.jstor.org/stable/2483810
  20. Hafeez B., Khanif Y.M., Saleem M. 2013. Role of zinc in plant nutrition. American Journal of Experimental Agriculture, 3(2): 374–391. https://doi.org/10.9734/AJEA/2013/2746
  21. Han X.M., Chen Q.X., Yang Q., Zeng Q.Y., Lan T., Liu Y.J. 2019. Genome-wide analysis of superoxide dismutase genes in Larix kaempferi. Gene, 686: 29–36. https://doi.org/10.1016/j.gene.2018.10.089
  22. Hauwa M.M., Gasim H. 2021. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal, 12(1): 355–365. https://doi.org/10.1016/j.asej.2020.05.009
  23. Hosamani V., Yalagi M., Sasvihalli P., Hosamani V., Nair K.S., Harlapur V.K., Hegde C.R., Mishra R.K. 2020. Importance of micronutrients (Zinc) in crop production: A review. International Journal of Chemical Studies, 8(1): 1060–1064. https://doi.org/10.22271/chemi.2020.v8.i1n.8393
  24. Hu B., Deng F., Chen G., Chen X., Gao W., Long L., Xia J., Chen Z-H. 2020. Evolution of abscisic acid signaling for stress responses to toxic metals and metalloids. Frontiers in Plant Science, 11: 909. https://doi.org/10.3389/fpls.2020.00909
  25. Kar P., Mishra S., Singh D. 1999. Influence of gibberellic acid on the sporulation of Azolla caroliniana, Azolla microphylla and Azolla pinnata. Biology and Fertility of Soils, 29: 424–429. https://doi.org/10.1007/s003740050575
  26. Kar P., Mishra S., Singh D. 2002. Azolla sporulation in response to application of some selected auxins and their combination with gibberellic acid. Biology and Fertility of Soils, 35: 314–319. https://doi.org/10.1007/s00374-002-0469-1
  27. Kaur H., Garg N. 2021. Zinc toxicity in plants: a review. Planta, 253(6): 129. https://doi.org/10.1007/s00425-021-03642-z
  28. Khan M.I.R., Khan N.A. 2014. Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma, 251(5): 1007–1019. https://doi.org/10.1007/s00709-014-0610-7
  29. Kosakivska I.V., Shcherbatiuk M.M., Babenko L.M., Polishchuk O.V. 2018. Characteristics of photosynthetic apparatus of aquatic fern Salvinia natans floating and submerged fronds. Advances in Biology & Earth Sciences, 3(1): 13–26.
  30. Kosakivska I.V., Babenko L.M., Romanenko K.O., Futorna O.A. 2020. Effects of exogenous bacterial quorum sensing signal molecule (messenger) N-hexanoyl-L-homoserine lactone (C6-HSL) on morphological and physiological responses of winter wheat under simulated acid rain. Reports of the National Academy of Sciences of Ukraine, 8: 92–100. https://doi.org/10.15407/dopovidi2020.07.092
  31. Kosakivska I.V., Vasyuk V.A., Voytenko L.V., Shcherbatiuk M.M. 2022. Plant hormonal system under heavy metal stress. Kyiv: M.G. Kholodny Institute of Botany, 176 p. Available at: https://www.botany.kiev.ua/doc/hormonal_monograph_2022.pdf
  32. Kosakivska I.V., Vedenicheva N.P., Shcherbatiuk M.M., Voytenko L.V., Vasyuk V.A. 2022a. Water ferns of Salviniaceae family in phytoremediation and phytoindication of contaminated water. Biotechnologia Acta, 15(5): 5–23. https://doi.org/10.15407/biotech15.05.005
  33. Kosakivska I.V., Vedenicheva N.P., Babenko L.M. Voytenko L.V., Romanenko K.O., Vasyuk V.A. 2022b. Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Molecular Biology Reports, 49(1): 617–628. https://doi.org/10.1007/s11033-021-06802-2
  34. Kosakivska I.V., Vedenicheva N.P., Voytenko L.V., Vasyuk V.A., Shcherbatiuk M.M. 2023. Phytohormones in the regulation of growth and development of water ferns of Salviniaceae family: a review. Studia Biologica, 17(3): 189–210. https://doi.org/10.30970/sbi.1703.721
  35. Kots S.Ya., Peterson T.V. 2005. Mineral elements and fertilizers in plant nutrition. Kyiv: Logos. 150 p.
  36. Kumar S., Shah S.H., Vimala Y., Jatav H.S., Ahmad P., Chen Y., Siddique K. H.M. 2022. Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.972856
  37. Laabassi A., Boudehane A. 2019. Wastewater treatment by floating macrophytes (Salvinia natans) under Algerian semi-arid climate. European Journal of Engineering and Natural Sciences, 3: 103–110.
  38. Liu J., Moore S., Chen C., Lindsey K. 2017. Crosstalk complexities between auxin, cytokinin and ethylene in Arabidopsis root development: from experiments to systems modeling and back again. Molecular Plant, 10(12): 1480–1496. https://doi.org/10.1016/j.molp.2017.11.002
  39. Mandal C., Ghosh N., Maiti S., Das K., Sudha Gupta, Dey N., Adak M.K. 2013. Antioxidative responses of Salvinia (Salvinia natans Linn.) to aluminium stress and its modulation by polyamine. Physiology and Molecular Biology of Plants, 19: 91–103. https://doi.org/10.1007/s12298-012-0144-4
  40. Mânzatu C., Nagy B. A., Iannelli R., Giannarelli S., Majdik C. 2015. Laboratory tests for the phytoextraction of heavy metals from polluted harbor sediments using aquatic plants. Marine Pollution Bulletin, 101(2): 605–611. https://doi.org/10.1016/j.marpolbul.20Marin15.10.045
  41. Mousavi S.R., Galavi M., Rezaei M. 2013. Zinc (Zn) importance for crop production — a review. International Journal of Agronomy and Plant Production, 4(1): 64–68.
  42. Munné-Bosch S., Müller M. 2013. Hormonal cross-talk in plant development and stress responses. Frontiers in Plant Science, 4: 529–531. https://doi.org/10.3389/fpls.2013.00529
  43. Mustafa H.M., Hayder G. 2021. Cultivation of S. molesta plants for phytoremediation of secondary treated domestic wastewater. Ain Shams Engineering Journal, 12(3): 1–8. https://doi.org/10.1016/j.asej.2020.11.028
  44. Ohtani S., Gon M., Tanaka K., Chujo Y. 2020. The design strategy for an aggregation-and crystallization-induced emission-active molecule based on the introduction of skeletal distortion by boron complexation with a tridentate ligand. Crystals, 10(7): 615. https://doi.org/10.3390/cryst10070615
  45. Pandey P.K., Singh S., Singh A.K., Samanta R., Yadav R.N., Singh M.C. 2016. Inside the plant: bacterial endophytes and abiotic stress alleviation. Journal of Applied and Natural Science, 8(4): 1899–1904. https://doi.org/10.31018/jans.v8i4.1059
  46. Pang Y.L., Quek Y.Y., Lim S., Shuit S.H. 2023. Review on Phytoremediation Potential of Floating Aquatic Plants for Heavy Metals: A Promising Approach. Sustainability, 15(2): 1290. https://doi.org/10.3390/su15021290
  47. Phytohormonal system and structural-functional features of pteridophytes (Polypodiophyta). 2019. Ed. I.V. Kosakivska. Kyiv: Nash Format, 250 p. Available at: https://www.botany.kiev.ua/doc/kosakivska.pdf
  48. Piotrowska-Niczyporuk A., Bajguz A., Kotowska U., Zambrzycka-Szelewa E., Sienkiewicz A. 2020. Auxins and cytokinins regulate phytohormone homeostasis and thiol-mediated detoxification in the green alga Acutodesmus obliquus exposed to lead stress. Scientific Reports, 10: 10193. https://doi.org/10.1038/s41598-020-67085-4
  49. Rahman S.U., Li Y., Hussain S., Hussain B., Khan W.D., Riaz L., Ashraf M.N., Khaliq M.A., Du Z., Cheng H. 2023. Role of phytohormones in heavy metal tolerance in plants: A review. Ecological Indicators, 146: 109844. https://doi.org/10.1016/j.ecolind.2022.109844
  50. Rongxue Cui R., Nam S.-H., An Y.-J. 2020. Salvinia natans: A potential test species for ecotoxicity testing. Environmental Pollution, 267: 115650. https://doi.org/10.1016/j.envpol.2020.115650
  51. Saradadevi R., Palta J.A., Siddique K.H.M. 2017. ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat. Frontiers in Plant Science, 8: 1251. https://doi.org/10.3389/fpls.2017.01251
  52. Seastedt T. 2009. Ecology: Traits of plant invaders. Nature, 459: 783–784. https://doi.org/10.1038/459783a
  53. Sharma A., Kumar V., Shahzad B., Ramakrishnan M., Singh Sidhu G.P., Bali A.S., Handa N., Kapoor D., Yadav P., Khanna K., Bakshi P., Rehman A., Kaur Kohli S., Khan E.A., Parihar R.D., Yuan H., Thukral A.K., Bhardwaj R., Zheng B. 2020. Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation, 39: 509–531. https://doi.org/10.1007/s00344-019-10018-x
  54. Shcherbatiuk M.M., Babenko L.M., Sheyko O.A., Kosakivska I.V. 2015. Microstructural features of water fern Salvinia natans (L.) All. organ surfaces. Modern Phytomorphology, 7: 129–133.
  55. Shcherbatiuk M.M., Babenko L.M., Sheyko O.A., Kosakivska I.V. 2016. Ultrastructure of chloroplasts and photosynthetic pigments in floating and submerged leaves of water fern Salvinia natans (L.) All. during ontogeny. Modern Phytomorphology, 9: 85–95. https://doi.org/10.5281/zenodo.159698
  56. Singh P.K., Bisoyi R.N., Singh R.P. 1990. Collection and germination of sporocarps (gibberellic acid treatment) of Azolla caroliniana. Annals of Botany, 66(1): 51–56. https://doi.org/10.1093/oxfordjournals.aob.a087999
  57. Sini S., Smitha R.B., Madhusoodanan P.V. 2015. Induction of sporocarp development in vitro in the mosquito fern, Azolla rubra R. Br. Annals of Plant Sciences, 4(02): 994–1002.
  58. Stefani G.D., Tocchetto D., Salvato M., Borin M. 2011. Performance of a floating treatment wetland for in-stream water amelioration in NE Italy. Hydrobiologia, 674: 157–167. https://doi.org/10.1007/s10750-011-0730-4
  59. Stroinski A., Chadzinikolau T., Gizewska K., Zielezinska M. 2010. ABA or cadmium induced phytochelatin synthesis in potato tubers. Biologia Plantarum, 54(1): 117–120. https://doi.org/10.1007/s10535-010-0017-z
  60. Tandon S.A., Kumar R., Parsana S. 2015. Auxin treatment of wetland and non-wetland plant species to enhance their phytoremediation efficiency to treat municipal wastewater. Journal of Scientific & Industrial Research, 74: 702–707.
  61. Tassi E., Pouget J., Petruzzelli G., Barbafieri M. 2008. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere, 71(1): 66–73. https://doi.org/10.1016/j.chemosphere.2007.10.027
  62. Vedenicheva N.P., Kosakivska I.V. 2017. Cytokinins as regulators of plant ontogenesis under different growth conditions. Kyiv: Nash Format, 202 p. Available at: https://www.botany.kiev.ua/doc/kos_ved.pdf
  63. Vidal C.F., Oliveira J.A., da Silva A.A., Ribeiro C., Farnese F.D.S. 2019. Phytoremediation of arsenite-contaminated environments: Is Pistia stratiotes L. a useful tool? Ecological Indicators, 104: 794–801. https://doi.org/10.1016/j.ecolind.2019.04.048
  64. Wang J., Chen J., Pan K. 2013. Effect of exogenous abscisic acid on the level of antioxidants in Atractylodesma crocephala Koidz under lead stress. Environmental Sciences and Pollution Research, 20(3): 1441–1449. https://doi.org/10.1007/s11356-012-1048-0
  65. Wang J., Moeen-ud-din M., Yang S. 2021. Dose-dependent responses of Arabidopsis thaliana to zinc are mediated by auxin homeostasis and transport. Environmental and Experimental Botany, 189: 104554. https://doi.org/10.1016/j.envexpbot.2021.104554
  66. Wang H., Cui S., Wu D., Yang X., Wang H., Wang Z. 2021. Effects of kinetin on arsenic speciation and antioxidative enzymes in fronds of the arsenic hyperaccumulator Pteris cretica var. nervosa and non-hyperaccumulator Pteris ensiformis. Environmental and Experimental Botany, 191: 104622. https://doi.org/10.1016/j.envexpbot.2021.104622
  67. Wellburn A.R. 1994. The spectral determination of chlorophylla and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3): 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2
  68. Yadav K.K., Gupta N., Kumar A., Reecec L.M., Singh N., Rezania S., Khan S.A. 2018. Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecological Engineering, 120: 274–298. https://doi.org/10.1016/j.ecoleng.2018.05.039
  69. Zhang Y., Liu G.J. 2018. Effects of cesium accumulation on chlorophyll content and fluorescence of Brassica juncea L. Journal of Environmental Radioactivity, 195: 26–32. https://doi.org/10.1016/j.jenvrad.2018.09.017
  70. Zhang P., Sun L., Qin J., Wan J., Wang R., Li S., Xu J. 2018. cGMP is involved in Zn tolerance through the modulation of auxin redistribution in root tips. Environmental and Experimental Botany, 147: 22–30. https://doi.org/10.1016/j.envexpbot.2017.10.025
  71. Zhao H., Wu L., Chai T., Zhang Y., Tan J., Ma S. 2012. The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana. Journal of Plant Physiology, 169(13): 1243–1252. https://doi.org/10.1016/j.jplph.2012.04.016