ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 2 of 6
Up
Ukr. Bot. J. 2024, 81(1): 8–15
https://doi.org/10.15407/ukrbotj81.01.008
Biotechnology, Physiology and Biochemistry

Isolation and characterisation of melanin pigment from mycelial cultures of Xylaria polymorpha (Ascomycota)

Atamanchuk A.R., Bisko N.A.
Abstract

Melanin is a heterogenic polymer of phenolic or indolic nature, possessing a broad spectrum of biological activities including radio- and photoprotective, antioxidant, chemoprotective, antiviral, antimicrobial, cytotoxic and immunostimulating activity. Based on these characteristics, natural melanin holds significant potential for applications in the fields of biomedicine, nanotechnology and materials science. Along with that, the exploration of organisms producing natural melanin remains relevant and filamentous fungi with their exceptional metabolic versatility are promising sources of these pigments. Wood-inhabiting fungi in particular are known to produce specific types of melanin as secondary metabolites. This study aimed to quantify and characterise melanin in the mycelium of various strains of Xylaria polymorpha, a common representative of wood-inhabiting fungi. As a result, among the ten studied strains of X. polymorpha, the highest melanin synthesis productivity was observed in the strain IBK 2737, reaching 180.32 ± 4.16 mg/l, while the lowest was recorded in the strain IBK 2723 at 5.17 ± 0.36 mg/l. This investigation highlights that X. polymorpha strains from the IBK Culture Collection show promise as a valuable source of natural melanin.

Keywords: Ascomycota, biomass, melanin, pigment, productivity, surface liquid cultivation, Xylaria

Full text: PDF (Eng) 1.59M

References
  1. Bell A.A., Wheeler M.H. 1986. Biosynthesis and functions of fungal melanins. Annual Review of Phytopathology, 24(1): 411–451. https://doi.org/10.1146/annurev.py.24.090186.002211
  2. Bisko N.A., Lomberg M.L., Mykchaylova O.B., Mytropolska N.Yu. 2023. IBK Mushroom Culture Collection. Version 1.5. The IBK Mushroom Culture Collection of the M.G. Kholodny Institute of Botany. In: GBIF – occurrence dataset. Available at: https://doi.org/10.15468/dzdsqu (Accessed 20 October 2023).
  3. Butler M.J., Day A.W., Henson J.M., Money N.P. 2001. Pathogenic properties of fungal melanins. Mycologia, 93(1): 1–8. https://doi.org/10.1080/00275514.2001.12061273
  4. Cao W., Zhou X., McCallum N.C., Hu Z., Ni Q.Z., Kapoor U., Heil C.M., Cay K.S., Zand T., Mantanona A.J., Jayaraman A., Dhinojwala A., Deheyn D.D., Shawkey M.D., Burkart M.D., Rinehart J.D., Gianneschi N.C. 2021. Unraveling the structure and function of melanin through synthesis. Journal of the American Chemical Society, 143(7): 2622–2637. https://doi.org/10.1021/jacs.0c12322
  5. Culka A., Jehlička J., Ascaso C., Artieda O., Casero C. M., Wierzchos J. 2017. Raman microspectrometric study of pigments in melanized fungi from the hyperarid Atacama desert gypsum crust. Journal of Raman Spectroscopy, 48(11): 1487–1493. https://doi.org/10.1002/jrs.5137
  6. De la Rosa J.M., Martin-Sanchez P.M., Sanchez-Cortes S., Hermosin B., Knicker H., Saiz-Jimenez C. 2017. Structure of melanins from the fungi Ochroconis lascauxensis and Ochroconis anomala contaminating rock art in the Lascaux Cave. Scientific Reports, 7(1): 1–11. https://doi.org/10.1038/s41598-017-13862-7
  7. Ellis D.H., Griffiths D.A. 1974. The location and analysis of melanins in the cell walls of some soil fungi. Canadian Journal of Microbiology, 20(10): 1379–1386. https://doi.org/10.1139/m74-212
  8. Fitzpatrick T.B. 1967. The evolution of concepts of melanin biology. Archives of Dermatology, 96(3): 305–323. https://doi.org/10.1001/archderm.96.3.305
  9. Hegnauer H., Nyhlen L.E., Rast D.M. 1985. Ultrastructure of native and synthetic Agaricus bisporus melanins – implications as to the compartmentation of melanogenesis in fungi. Experimental Mycology, 9(3): 1–29. https://doi.org/10.1016/0147-5975(85)90018-0
  10. Langfelder K., Streibel M., Jahn B., Haase G., Brakhage A.A. 2003. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genetics and Biology, 38(2): 143–158. https://doi.org/10.1016/s1087-1845(02)00526-1
  11. Lopusiewicz L. 2018. Isolation, characterisation and biological activity of melanin from Exidia nigricans. World Scientific News, 91: 119–129.
  12. Menter J.M. 2016. Melanin from a physicochemical point of view. Polymer International, 65(11): 1300–1305. https://doi.org/10.1002/pi.5194
  13. Nosanchuk J.D., Stark R.E., Casadevall A. 2015. Fungal melanin: what do we know about structure? Frontiers in Microbiology, 6: 1–7. https://doi.org/10.3389/fmicb.2015.01463
  14. Piattelli M., Fattorusso E., Nicolaus R.A., Magno S. 1965. The structure of melanins and melanogenesis – V. Tetrahedron, 21(11): 3229–3236. https://doi.org/10.1016/s0040-4020(01)96941-8
  15. Pombeiro-Sponchiado S.R., Sousa G.S., Andrade J.C., Lisboa H.F., Gonçalves R.C. 2017. Production of melanin pigment by fungi and its biotechnological applications. Melanin, 1(4): 47–75. https://doi.org/10.5772/67375
  16. Pralea I.-E., Moldovan R.-C., Petrache A.-M., Ilieş M., Hegheş S.-C., Ielciu I., Nicoară R., Moldovan M., Ene M., Radu M., Uifălean A., Iuga C.-A. 2019. From extraction to advanced analytical methods: the challenges of melanin analysis. International Journal of Molecular Sciences, 20(16): 3943. https://doi.org/10.3390/ijms20163943
  17. Rizner T.L., Wheeker M.H. 2003. Melanin biosynthesis in the fungus Clavularia lunata (teleomorph: Cochilobolus lunatus). Canadian Journal of Microbiology, 49(2): 110–119. https://doi.org/10.1139/w03-016
  18. Rosa L.H., Vieira L.M.A., Santiago I.F., Rosa C.A. 2010. Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiology Ecology, 73(1): 178–189. https://doi.org/10.1111/j.1574-6941.2010.00872.x
  19. Singla S., Htut K.Z., Zhu R., Davis A., Ma J., Ni Q.Z., Burkart M.D., Maurer C., Miyoshi T., Dhinojwala A. 2021. Isolation and characterization of allomelanin from pathogenic black knot fungus – a sustainable source of melanin. ACS Omega, 6(51): 35514–35522. https://doi.org/10.1021/acsomega.1c05030
  20. Thompson J.E., Fahnestock S., Farrall L., Liao D.-I., Valent B., Jordan D.B. 2000. The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea. Journal of Biological Chemistry, 275(45): 34867–34872. https://doi.org/10.1074/jbc.m006659200
  21. Tudor D., Robinson S.C., Cooper P.A. 2013. The influence of pH on pigment formation by lignicolous fungi. International Biodeterioration & Biodegradation, 80: 22–28. https://doi.org/10.1016/j.ibiod.2012.09.013
  22. Turick C.E., Knox A.S., Becnel J.M., Ekechukwu A.A., Millike C.E. 2010. Properties and function of pyomelanin. Biopolymers, 23: 449–472. https://doi.org/10.5772/10273
  23. Zhdanova N.N., Vasilevskaya A.I. 1988. Melanosoderzhashchie griby v ekstremalnykh usloviyakh. Kyiv: Naukova Dumka, 150 pp.
  24. Zhdanova N.N., Zakharchenko V.A., Vember V.A., Nakonechnaya L.T. 2000. Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycological Research, 104: 1421–1426. https://doi.org/10.1017/s0953756200002756