ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 6 of 7
Up
Ukr. Bot. J. 2022, 79(5): 329–338
https://doi.org/10.15407/ukrbotj79.05.329
Biotechnology, Physiology and Biochemistry

Effects of exogenous bacterial quorum-sensing signal molecule/messenger N-hexanoyl-L-homoserine lactone (C-HSL) on acorn germination and plant growth of Quercus robur and Q. rubra (Fagaceae)

Kosakivska I.V., Vasyuk V.A., Voytenko L.V., Shcherbatiuk M.M., Babenko L.M., Romanenko K.O.
Abstract

The effect of pre-sowing priming with N-hexanoyl-L-homoserine lactone (C6-HSL) solution (300 mg/L) on acorn germination and morpho-phenological characteristics of Quercus robur and Q. rubra was studied under laboratory conditions. After priming, 93.4% of Q. robur acorns germinated that exceeded the control by 32.2%, while the number of sprouted acorns of Q. rubra increased within error limits by 5% more than the control and amounted to 90%. According to morphological characteristics, the 47-day-old plants of Q. robur were divided into the following groups: germinated acorns, sprouts and seedlings with juvenile leaves, whereas among the plants of Q. rubra, sprouts and seedlings with true leaves were selected. A group of plants with juvenile leaves was detected only in the samples primed with C6-HSL. Priming induced differential changes in cotyledon biomass of both species and accelerated nutrient utilization by Q. robur seedlings. We observed a positive effect on the growth and biomass accumulation of Q. robur plants and a negative effect, except for plants of the third group, on those of Q. rubra. The dry weight of seedling roots of Q. robur and shoots of Q. rubra increased, respectively, by 103% and 153%. Priming of acorns with C6-HSL solution induced an increase in number, length, biomass and total area of leaves. These changes were more pronounced in Q. rubra seedlings. Alterations in the root system architecture towards formation of numerous additional lateral roots were recorded for both species. Thus, priming with C6-HSL solution activated acorn germination and stimulated growth of Q. robur plants and decelerated growth of plants of Q. rubra. Exogenous C6-HSL did not eliminate the syndrome of unfriendly seedlings of both studied oak species, but improved the viability of acorns and increased the number of seedlings.

Keywords: acorns, biometric indicators, germination, N-hexanoyl-L-homoserine lactone, priming, Quercus robur, Quercus rubra, seedlings

Full text: PDF (Ukr) 1.79M

References
  1. Babenko L.M., Kosakivska I.V., Romanenko K.O. 2022. Molecular mechanisms of N-acyl homoserine lactone signals perception by plants. Cell Biology International, 46(4): 523–534. https://doi.org/10.1002/cbin.11749
  2. Babenko L.M., Kosakivska I.V., Voytenko L.V., Romanenko K.O. 2021a. Fiziyolohiya roslyn i henetyka, 53(5): 371–386. https://doi.org/10.15407/frg2021.05.371
  3. Babenko L.M., Romanenko K.O., Iungin O.S., Kosakivska I.V. 2021b. Acyl-homoserine lactones for crop production and stress tolerance of agricultural plants. Agricultural Biology, 56(1): 3–19.
  4. Binotto A.F., Dal Col Lucio A., Lopes S.J. 2010. Correlations between growth variables and the Dickson quality index in forest seedlings. Cerne, Lavras, 16(4): 457–464. https://doi.org/10.1590/S0104-77602010000400005
  5. Bonner F.T., Vozzo J.A. 1987. Seed Biology and Technology of Quercus. Gen. Tech. Rep. SO-66. New Orleans, LA: U.S. Dept of Agriculture, Forest Service, Southern Forest Experiment Station, 21 pp. https://doi.org/10.2737/SO-GTR-66
  6. Escandón M., Castillejo M.Á., Jorrín-Novo J.V., Rey M.-D. 2021. Molecular research on stress responses in Quercus spp.: from classical biochemistry to systems biology through omics analysis. Forests, 12(3): 364. https://doi.org/10.3390/f12030364
  7. Gahoi P., Omar R.A., Verma N., Gupta G.S. 2021. Rhizobacteria and acylated homoserine lactone-based nanobiofertilizer to improve growth and pathogen defense in Cicer arietinum and Triticum aestivum plants. ACS Agricultural Science & Technology, 1(3): 240–252. https://doi.org/10.1021/acsagscitech.1c00039
  8. Hrodzynskyi D.M., Shelyah-Sosonko Yu.R., Cherevchenko T.M., Yemelyanov I.H., Sobko V.H. (eds.). 2001. Problemy zberezhennya ta vidnovlennya bioriznomanittya v Ukraini. Kyiv: Akademperiodyka, 105 pp.
  9. Hvozdyak R.Y., Hordyenko M.Y., Hoychuk A.F. 1993. Dub chereshchatyi v Ukraine. Kyiv: Naukova Dumka, 222 pp.
  10. Kosakivska I.V., Babenko L.M., Romanenko K.O., Futorna O.A. 2020. Effects of exogenous bacterial quorum sensing signal molecule (messenger) N-hexanoyl-L-homoserine lactone (C6-HSL) on morphological and physiological responses of winter wheat under simulated acid rain. Dopovidi Natsionalnoi akademiyi nauk Ukrainy, 8: 92–100. http://dx.doi.org/10.15407/dopovidi2020.08.092
  11. Kosakivska I.V., Voytenko L.V., Vasyuk V.A., Shcherbatiuk M.M. 2022. Ukrainian Botanical Journal, 79(4): 254–266. https://doi.org/10.15407/ukrbotj79.04.254
  12. Lareen A., Burton F., Schäfer P. 2016. Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90(6): 575–587. https://doi.org/10.1007/s11103-015-0417-8
  13. Liu F., Bian Z., Jia Z., Zhao Q., Song S. 2012. The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals. Molecular Plant-Microbe Interactions: MPMI, 25(5): 677–683. https://doi.org/10.1094/MPMI-10-11-0274
  14. Moshynets O.V., Babenko L.M., Rogalsky S.P., Iungin O.S., Foster J., Kosakivska I.V. Potters G., Spiers A.J. 2019. Priming winter wheat seeds with the bacterial quorum sensing signal N-hexanoyl-Lhomoserine lactone (C6-HSL) shows potential to improve plant growth and seed yield. PLoS ONE, 14(2): e0209460. https://doi.org/10.1371/journal.pone.0209460
  15. Natelson S., Natelson E.A. 1989. Preparation of D-, DL- and L-homoserine lactone from methionine. Microchemical Journal, 40: 226–232. https://doi.org/10.1016/0026-265X(89)90074-X
  16. Nicolescu V.N., Vor T., Mason W.L., Bastien J.C., Brus R.H., Henin J.M., Kupka I., Lavnyy V., La Porta N., Mohren F., Petkova K., Rédei K., Štefančík I., Wąsik R., Perić S., Hernea C. 2018. Ecology and management of northern red oak (Quercus rubra L. syn. Q. borealis F.Michx.) in Europe. Forestry, 93(4): 481–494. https://doi.org/10.1093/forestry/cpy032
  17. Ortiz-Castro R.A., Martinez-Trujillo M.I., Lypez-Bucio J.O. 2008. N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant, Cell & Environment, 31(10): 1497–1509. https://doi.org/10.1111/j.1365-3040.2008.01863.x
  18. Rogovsky S.V. 2006. Naukovyi visnyk NLTU Ukrainy: zbirnyk naukovo-tekhnichnykh prats (Lviv), 16.2: 41–47.
  19. Schenk S.T., Stein E., Kogel K.H., Schikora A. 2012. Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signaling & Behavior, 7(2): 178–181. https://doi.org/10.4161/psb.18789
  20. Shrestha A., Elhady A., Adss S., Wehner G., Bottcher C., Heuer H. 2019. Genetic differences in barley govern the responsiveness to N-acyl-homoserine lactone. Phytobiomes Journal, 3: 191–202. https://doi.org/10.1094/PBIOMES-03-19-0015-R
  21. Shrestha A., Schikora A. 2020. AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiology Ecology, 96(12): 226. https://doi.org/10.1093/femsec/fiaa226
  22. Van Emden H. 2008. Statistics for terrified biologists. Oxford, UK: Wiley-Blackwell, 360 pp.
  23. von Rad U., Klein I., Dobrev P.I., Kottova J., Zazimalova E., Fekete A., Hartmann A., Schmitt-Kopplin P., Durner J. 2008. Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta, 229(1): 73–85. https://doi.org/10.1007/s00425-008-0811-4
  24. Yamada T., Suzuki E., Yamakura T., Tan S. 2005. Tap-root depth of tropical seedlings in relation to species-specific edaphic preferences. Journal of Tropical Ecology, 21(2): 155–160. https://doi.org/10.1017/S0266467404002238