ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 6 of 6
Up
Ukr. Bot. J. 2022, 79(4): 254–266
https://doi.org/10.15407/ukrbotj79.04.254
Biotechnology, Physiology and Biochemistry

Effect of priming with gibberellic acid on acorn germination and growth of plants of Quercus robur and Q. rubra (Fagaceae)

Kosakivska I.V., Vasyuk V.A., Voytenko L.V., Shcherbatiuk M.M.
Abstract

The effect of pre-sowing priming with gibberellic acid (GA3) solution (50 mg/L) on acorn germination and growth characteristics of 47-day-old plants of Quercus robur and Q. rubra was studied under laboratory conditions. The priming effect varied depending on the oak species and development phase of the plants. After priming, 86% of Q. robur acorns germinated that exceeded the control by 25%, while the number of sprouted acorns of Q. rubra was at the control level and amounted to 85%. The 47-day-old plants of Q. robur were divided into three groups: (1) sprouted acorns with cracked pericarp and main root; (2) seedlings with formed epicotyl and apical bud; (3) seedlings with unopened true leaves of juvenile type. The plants of Q. rubra were divided into two groups: (1) seedlings with formed epicotyl and apical bud; (2) seedlings with open true leaves. In plants of Q. robur, priming caused decrease of biomass in cotyledons, while no visible changes were found for those of Q. rubra. An increase in growth characteristics, fresh and dry biomass accumulation was noted for all Q. robur plants whereas thickening of shoots was observed only in seedlings of the second group. Instead, hormone treatment of acorns of Q. rubra led to inhibition of growth processes in plants of both groups. In general, priming with GA3 solution enhanced germination of acorns and stimulated growth of Q. robur plants and, conversely, slowed the growth of Q. rubra plants. Exogenous GA3 did not eliminate the syndrome of unfriendly seedlings of the studied oak species, but improved the viability of acorns and increased the number of seedlings/shoots.

Keywords: acorn, biometrics, germination, gibberellic acid, priming, Quercus robur, Quercus rubra, seedling

Full text: PDF (Ukr) 1.38M

References
  1. Acar I., Yaşar H., Ercişli S. 2017. Effects of dormancy-breaking treatments on seed germination and seedling growth of Pistacia khinjuk Stocks using as rootstock for pistachio trees. Journal of Applied Botany and Food Quality, 90: 191–196. https://doi.org/10.5073/JABFQ.2017.090.024
  2. Ameen N.M., Al-Imam A. 2007. Effect of soaking periods, gibberellic acid, and benzyladenine on pistachio seeds germination and subsequent seedling growth (Pistacia vera L.). Mesopotamia Journal of Agriculture, 35: 2–8. http://dx.doi.org/10.33899/magrj.2007.26495
  3. Avtonomov A.N. 2014. Vestnyk ChHPU im. Y.Ya. Yakovleva, 4(84): 52–56.
  4. Binotto A.F., Dal' Col Lúcio A., Lopes S.J. 2010. Correlations between growth variables and the Dickson quality index in forest seedlings. Cerne, Lavras, 16(4): 457–464. https://doi.org/10.1590/S0104-77602010000400005
  5. Bonfil C. 1998. The effects of seed size, cotyledon reserves, and herbivory on seedling survival and growth in Quercus rugosa and Q. laurina (Fagaceae). American Journal of Botany, 85(1): 79–87. https://doi.org/10.2307/2446557
  6. Brus R. 2008. Dendrologija za gozdarje (Dendrology for Foresters). 2nd ed. Ljubljana: Univerza Ljubljani, Biotehniška fakulteta, 408 pp.
  7. Bruun H.H., Ten Brink D.-J. 2008. Recruitment advantage of large seeds is greater in shaded habitats. Écoscience, 15(4): 498–507. Available at: http://www.jstor.org/stable/42902423. https://doi.org/10.2980/15-4-3147
  8. Chacón P., Bustamante R.O., Henríquez C.A. 1998. The effect of seed size on germination and seedling growth of Cryptocarya alba (Lauraceae) in Chile. Revista Chilena de Historia Natural, 71(2): 189–197.
  9. Didenko M.M. 2008. Bulletin of Kharkiv National Agrarian University named after V.V. Dokuchayev. Seria Soil science, agrochemistry, farming, forestry, ecology of soil, 4: 112–114.
  10. Elo A., Immanen J., Nieminen K., Helariutta Y. 2009. Stem cell function during plant vascular development. Seminars in Cell & Developmental Biology, 20(9): 1097–1106. https://doi.org/10.1016/j.semcdb.2009.09.009
  11. Fenner M., Thompson K. 2005. The ecology of seeds. Cambridge: Cambridge University Press, 250 pp. https://doi.org/10.1017/CBO9780511614101
  12. Finkelstein R., Reeves W., Ariizumi T., Steber C. 2008. Molecular aspects of seed dormancy. Annual Review of Plant Biology, 59: 387–415. http://doi.org/10.1146/annurev.arplant.59.032607.092740
  13. Fylonyk Y.A., Aprasyukhyn A.Y., Nykytyn M.M. 2007. Stimulyator prorastaniya, rosta i razvitiya drevesnykh rastenyi i sposob stimulyatsyi prorastaniya, rosta i razvitiya drevesnykh rastenyi. Patent 2007115687/04. 26.04.2007. Available at: https://patents.google.com/patent/RU2362303C2/ru]
  14. Gantait S., Sinniah U.R., Ali M.N., Sahu N.C. 2015. Gibberellins – a multifaceted hormone in plant growth regulatory network. Current Protein & Peptide Science, 16(5): 406–412. http://doi.org/10.2174/1389203716666150330125439
  15. García-De La Cruz Y., López-Barrera F., Ramos-Prado J.M. 2016. Germination and seedling emergence of four endangered oak species. Madera Bosques, 22(2): 77–87. https://doi.org/10.21829/myb.2016.2221326
  16. Gómez J.M. 2004. Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evolution, 58(1): 71–80. https://doi.org/10.1111/j.0014-3820.2004.tb01574.x
  17. Gubler F., Kalla R., Roberts J.K., Jacobsen J.V. 1995. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. The Plant Cell, 7(11): 1879–1891. https://doi.org/10.1105/tpc.7.11.1879
  18. Hoychuk A.F. 1998. Hospodarski zakhody formuvannya vysokoproduktyvnykh dubovykh nasadzhen. Zhytomyr: Polissya, 95 pp.
  19. Hrodzynskyi D.M., Shelyah-Sosonko Yu.R., Cherevchenko T.M., Yemelyanov I.H., Sobko V.H. 2001. Problemy zberezhennya ta vidnovlennya bioriznomanittya v Ukraini. Kyiv: Akademperiodyka, 105 pp.
  20. Huerta-Paniagua R., Rodríguez-Trejo D. 2011. Efecto del tamaño de semilla y la temperatura en la germinación de Quercus rugosa Née. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 17(2): 179–187. https://doi.org/10.5154/r.rchscfa.2010.08.053
  21. Kabeya D., Sakai S. 2003. The role of roots and cotyledons as storage organs in early stages of establishment in Quercus crispula: a quantitative analysis of the nonstructural carbohydrate in cotyledons and roots. Annals of Botany, 92(4): 537–545. https://doi.org/10.1093/aob/mcg165
  22. Kosakivska I.V., Voytenko L.V., Vasyuk V.A., Vedenychova N.P., Babenko L.M., Shcherbatyuk M.M. 2019. Fiziolohiya roslyn i henetyka, 51(3): 187–206. http://www.frg.org.ua/uk/2019/187-206N3V51.htm] https://doi.org/10.15407/frg2019.03.187
  23. Koukouroukou-Petridou M.A. 1996. Paclobutrazol affects growth of almond fruits and germination of almond seeds. Plant Growth Regulation, 20: 267–269. https://doi.org/10.1007/BF00043317
  24. Maku J., Gbadamosi A.E., Fadoju O. 2014. Germination and seedling growth of Mansonia altissima (A.Chev.) A.Chev. in response to hormonal treatment. International Journal of Agriculture and Forestry, 4(4): 269–274.
  25. Nicolescu V-N., Vor T., Mason W.L., Bastien J-C., Brus R., Henin J-M., Kupka I., Lavnyy V., Porta N.L., Mohren F. 2020. Ecology and management of northern red oak (Quercus rubra L. syn. Q. borealis F. Michx.) in Europe: a review. International Journal of Forest Research, 93(4): 481–494. https://doi.org/10.1093/forestry/cpy032
  26. Patlay Y.N. 1984. Selektsionno-ekologicheskie osnovy semenovodstva i vyrashchivaniya vysokoproduktivnykh kultur sosny obyknovennoy, duba chereshchatoho, yasenya obyknovennoho v ravninnoy chasty Ukrainskoy SSR: Dr. Sci. Diss. Kharkov, 586 pp. (manuscript).
  27. Paz H., Martínez-Ramos M. 2003. Seed mass and seedling performance within eight species of Psychotria (Rubiaceae). Ecology, 84(2): 439–450. Available at: http://www.jstor.org/stable/3107899
  28. Pipinis E., Milios E., Kiamos N., Mavrokordopoulou O., Smiris P. 2012. Effects of stratification and pre-treatment with gibberellic acid on seed germination of two Carpinus species. International Seed Testing Association, 40(1): 21–31. https://doi.org/10.15258/sst.2012.40.1.03
  29. Pipinis E., Milios E., Tomazos N., Smiris P. 2014. Breaking dormancy and germination of Cotinus coggygria Scop. seeds by means of sulphuric acid scarification, cold stratification and gibberellic acid. Silva Balcanica, 15(1): 38–46. Available at: https://www.researchgate.net/publication/283856431
  30. Rogovsky S.V. 2006. Naukovyi visnyk NLTU Ukrainy (Lviv), 16.2: 41–47.
  31. Romanov E.M., Smyshlyaeva M.I., Krasnov V.G., Mukhortov D.I. 2017. Growing of one-year containerized seedlings of English oak (Quercus robur L.) with the use of various nutritious substrates. Vestnik of Volga State University of Technology. Seria: Forest. Ecology. Nature Management, 3(35): 26–36. https://doi.org/10.15350/2306-2827.2017.3.26
  32. Sale F.A. 2016. Effects of different growth hormones on seed germination and seedling growth of African Locust Bean (Parkia biglobosa (Jacq.) Benth). International Journal of Forestry and Horticulture, 2(2): 14–20. https://dx.doi.org/10.20431/2454-9487.0202002
  33. Sánchez-Montes de Oca E.J., Badano E.I., Silva-Alvarado L.E., Flores J., Barragán-Torres F., Flores-Cano J.A. 2018. Acorn weight as determinant of germination in red and white oaks: evidences from a common-garden greenhouse experiment. Annals of Forest Science, 75: 12. https://doi.org/10.1007/s13595-018-0693-y
  34. Schupp W.E. 1995. Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. American Journal of Botany, 82(3): 399–409. https://doi.org/10.2307/2445586
  35. Silvertown J.W. 1989. The paradox of seed size and adaptation. Trends in Ecology and Evolution, 4: 24–26. https://doi.org/10.1016/0169-5347(89)90013-X
  36. Sklyar V.H. 2011. Bulletin of Zaporizhzhia National University. Biological Sciences, 2: 119–125.
  37. Sponsel V., Hedden P. 2010. In: Gibberellin Biosynthesis and Inactivation. Plant Hormones. Ed. P.J. Davies. Dordrecht: Springer, pp. 63–94. https://doi.org/10.1007/978-1-4020-2686-7_4
  38. Sytnyk K.M., Musatenko L.I., Vasyuk V.A., Vedenychova N.P., Heneralova V.M., Martyn H.I., Nyesterova A.N. 2003. Hormonalnyi kompleks roslyn i hrybiv. Kyiv, 186 pp.
  39. Thangjam U., Sahoo U.K. 2017. Effects of different pre-treatments and germination media on seed germination and seedling growth of Parkia timoriana (DC.) Merr. Journal of Experimental Biology and Agricultural Sciences, 5(1): 98–105. https://doi.org/10.18006/2017.5%281%29.098.105
  40. Timbal J., Dreyer E. 1994. Water consumption and drought resistance. In: Timbal J., Kremer A., Le Goff N., Nepveu G. (eds). Le chêne rouge d'Amérique. INRA éditions, pp. 85–90.
  41. Trots V.B. 2016. Agrokhimiya i lesnoe khozyaystvo, 5: 49–51.
  42. Van Emden H. 2008. Statistics for terrified biologists. Oxford, UK: Wiley-Blackwell, 360 pp.
  43. Wulf R. 1986. Seed size variation in Desmodium paniculatum II. Effects on seedling growth and physiological performance. Journal of Ecology, 74(1): 99–114. https://doi.org/10.2307/2260351
  44. Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Annual Review of Plant Biology, 59: 225–251. https://doi.org/10.1146/annurev.arplant.59.032607.092804
  45. Yi X., Wang Z. 2016. The importance of cotyledons for early-stage oak seedlings under different nutrient levels: a multi-species study. Journal of Plant Growth Regulation, 35(1): 183–189. https://doi.org/10.1007/s00344-015-9516-7
  46. Yuan H., Zhao L., Guo W., Yu Y., Tao L., Zhang L., Song X., Huang W., Cheng L., Chen J., Guan F., Wu G., Li H. 2019. Exogenous application of phytohormones promotes growth and regulates expression of wood formation-related genes in Populus simonii × P. nigra. International Journal of Molecular Sciences, 20(3): 792. https://doi.org/10.3390/ijms20030792
  47. Yücedağ C., Bilir N. 2019. Phytohormone effect on seedling quality in Hungarian oak. Forest Systems, 28(2): 1–7. https://doi.org/10.5424/fs/2019282-14604
  48. Zavala-Chávez F. 2004. Desecación de bellotas y su relación con la viabilidad y germinación en nueve especies de encinos mexicanos. CIENCIA ergo-sum, 11(2): 177–185. Available at: https://cienciaergosum.uaemex.mx/article/view/7555
  49. Zhukov A.B. 1950. Dubravy SSSR. Vol. 1. Moscow, Leningrad: Goslesbumyzdat, 352 pp.