ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 3 of 6
Up
Ukr. Bot. J. 2022, 79(1): 27–34
https://doi.org/10.15407/ukrbotj79.01.027
Cell Biology and Molecular Biology

Design of microsatellite markers for Schizophyllum commune (Agaricales, Basidiomycota) based on analysis of its genome

Boiko S.M.
Abstract

Simple sequence repeats of DNA (SSRs) are the most popular source of genetic markers used in population genetics, phylogenetics, and genetic mapping. A large number of nucleotide repeats enriched in G and C were identified. 336 mononucleotide motifs with more than ten repeats were recorded. 2020 nucleotide repeats were identified, of which 97.4% are di- (68.2%) and trinucleotides (29.2%). The total number of unique SSR loci, to which primers pairs were developed, was 1920. PCR primer sequences for unique SSR loci of the S. commune genome are presented. Of the twenty-two SSR markers synthesized for the S. commune genome, amplicons formed 64% on freshly isolated DNA samples.

Keywords: genome, motif, primers, Schizophyllum commune, SSR markers

Full text: PDF (Ukr) 1.20M

References
  1. Andjelkovic V., Nikolic A., Kovacevic D., Mladenovic-Drinic S., Kravic N., Babic V., Bosev D. 2018. Conserving maize in gene banks: Changes in genetic diversity revealed by morphological and SSR markers. Chilean Journal of Agricultural Research, 78(1): 30–38. http://dx.doi.org/10.4067/S0718-58392018000100030
  2. Beier S., Thiel T., Münch T., Scholz U., Mascher M. 2017. MISA-web: a web server for microsatellite prediction. Bioinformatics, 33: 2583–2585. https://doi.org/10.1093/bioinformatics/btx198
  3. Boiko S.M. 2015. Ukrainian Botanical Journal, 72(3): 252–256. https://doi.org/10.15407/ukrbotj72.03.252
  4. Boiko S.M. 2018. Pool of endoglucanase genes in Schizophyllum commune Fr.: Fr. (Basidiomycetes) on the territory of Ukraine. Acta Biologica Szegediensis, 62(1): 53–59. https://doi.org/10.14232/abs.2018.1.53-59
  5. Chakraborty R., Kimmel M., Stivers D.N., Davison L.J., Deka R. 1997. Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proceedings of the National Academy of Sciences, 94(3): 1041–1046. https://doi.org/10.1073/pnas.94.3.1041
  6. Garbelotto M., Bruns T.D., Cobb E.W., Otrosina W.I. 1993. Differentiation of intersterility groups and geographic provenances among isolates of Heterobasidion annosum detected by random amplified polymorphic DNA assays. Canadian Journal of Botany, 71: 565–569. https://doi.org/10.1139/b93-063
  7. Gerber H.P., Seipel K., Georgiev O., Hofferer M., Hug M., Rusconi S., Schaffner W. 1994. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science, 263: 808–811. https://doi.org/10.1126/science.8303297
  8. Hefferon T.W., Groman J.D., Yurk C.E., Cutting G.R. 2004. A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing. Proceedings of the National Academy of Sciences, 101: 3504–3509. https://doi.org/10.1073/pnas.0400182101
  9. Huang H., Dane F., Kubisiak, T. 1998. Allozyme and RAPD analysis of the genetic diversity and geographic variation in wild populations of the American chestnut (Fagaceae). American Journal of Botany, 85(7): 1013–1021. https://doi.org/10.2307/2446368
  10. Karaoglu H., Lee C.M., Meyer W. 2005. Survey of simple sequence repeats in completed fungal genomes. Molecular Biology and Evolution, 22(3): 639–649. https://doi.org/10.1093/molbev/msi057
  11. Kashi Y., King D., Soller M. 1997. Simple sequence repeats as a source of quantitative genetic variation. Trends in Genetics, 13(2): 74–78. https://doi.org/10.1016/s0168-9525(97)01008-1
  12. Kashi Y., King D.G. 2006. Simple sequence repeats as advantageous mutators in evolution. Trends in Genetics, 22(5): 253–259. https://doi.org/10.1016/j.tig.2006.03.005
  13. Kim D.W., Nam J., Nguyen H., Lee J., Choi Y., Choi J. 2020. Draft Genome Sequence of the White-Rot Fungus Schizophyllum Commune IUM1114-SS01. Mycobiology, 49(1), 86–88. https://doi.org/10.1080/12298093.2020.1843222
  14. Kirungu J.N., Deng Y., Cai X., Magwanga R.O., Zhou Z., Wang X., Wang Y., Zhang Z., Wang K., Liu F. 2018. Simple sequence repeat (SSR) genetic linkage map of D genome diploid cotton derived from an interspecific cross between Gossypium davidsonii and Gossypium klotzschianum. International Journal of Molecular Sciences, 19(1), 204: 1–21. https://doi.org/10.3390/ijms19010204
  15. Koressaar T., Lepamets M., Kaplinski L., Raime K., Andreson R., Remm M. 2018. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics, 34(11): 1937–1938. https://doi.org/10.1093/bioinformatics/bty036
  16. Lagercrantz U., Ellegren H., Andersson L. 1993. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Research, 21(5): 1111–1115. https://doi.org/10.1093/nar/21.5.1111
  17. Lee H.Y., Raveendar S., An H., Oh Y.L., Jang K.Y., Kong W.S., Ryu H., So Y.S., Chung J.W. 2018. Development of polymorphic simple sequence repeat markers using highthroughput sequencing in button mushroom (Agaricus bisporus). Mycobiology, 46(4): 421–428. https://doi.org/10.1080/12298093.2018.1538072
  18. Li H., Wu S., Ma X., Chen W., Zhang J., Duan S., Gao Y., Kui L., Huang W., Wu P., Shi R., Li Y., Wang Y., Li J., Guo X., Luo X., Li Q., Xiong C., Liu H., Gui M., Dong Y. 2018. The Genome Sequences of 90 Mushrooms. Scientific reports, 8(9982): 1–5. https://doi.org/10.1038/s41598-018-28303-2
  19. Lim S., Notley-McRobb L., Lim M., Carter D.A. 2004. A comparison of the nature and abundance of microsatellites in 14 fungal genomes. Fungal Genetics and Biology, 41(11): 1025–1036. https://doi.org/10.1016/j.fgb.2004.08.004
  20. Liu J. X., Cai Y. N., Jiang W. Y., Li Y. G., Zhang Q. F., Pan H. Y. 2020. Population Structure and Genetic Diversity of Fungi Causing Rice Seedling Blight in Northeast China Based on Microsatellite Markers. Plant disease, 104(3): 868–874. https://doi.org/10.1094/PDIS-08-19-620-RE
  21. Mrazek J., Guo X., Shah A. 2007. Simple sequence repeats in prokaryotic genomes. Proceedings of the National Academy of Sciences of the United States of America, 104(20): 8472–8477. https://doi.org/10.1073/pnas.0702412104
  22. Ohm R.A., de Jong J.F., Lugones L.G., Aerts A., Kothe E., Stajich J.E., de Vries R.P., Record E., Levasseur A., Baker S.E., Bartholomew K.A., Coutinho P.M., Erdmann S., Fowler T.J., Gathman A.C., Lombard V., Henrissat B., Knabe N., Kües U., Lilly W.W., Lindquist E., Lucas S., Magnuson J.K., Piumi F., Raudaskoski M., Salamov A., Schmutz J., Schwarze F.W., van Kuyk P.A., Horton J.S., Grigoriev I.V., Wösten H.A. 2010. Genome sequence of the model mushroom Schizophyllum commune. Nature Biotechnology, 28(9): 957–963. https://doi.org/10.1038/nbt.1643
  23. Schllotteroer C., Amos B., Tautz D. 1991. Conservation of polymorphic simple sequence loci in cetacean species. Nature, 354: 63–65. https://doi.org/10.1038/354063a0
  24. Shakyawar S.K., Joshi B.K., Kumar D. 2009. SSR repeat dynamics in mitochondrial genomes of five domestic animal species. Bioinformation, 4(4): 158–163. https://doi.org/10.6026/97320630004158
  25. Singh A.K., Chaurasia S., Kumar S., Singh R., Kumari J., Yadav M.C., Singh N., Gaba S., Jacob S.R. 2018. Identification, analysis and development of salt responsive candidate gene based SSR markers in wheat. BMC Plant Biology, 18(249): 1–15. https://doi.org/10.1186/s12870-018-1476-1
  26. Stallings R.L, Ford A.F., Nelson D., Torney D.C., Hildebrand C.E., Moyzis R.K. 1991. Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genomics, 10: 807–815. https://doi.org/10.1016/0888-7543(91)90467-s
  27. Tautz D., Renz M. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic acids research, 12(10): 4127–4138. https://doi.org/10.1093/nar/12.10.4127
  28. Wang Y., Chen, M.J., Wang H., Wang J.-F., Bao D.P. 2014. Microsatellites in the genome of the edible mushroom, Volvariella volvacea. BioMed Research International, 2014(281912): 1–10. https://doi.org/10.1155/2014/281912
  29. Wang X., Wang L. 2016. GMATA: an integrated software package for genome-scale SSR mining, marker development and viewing. Frontiers in Plant Science, 7(1350): 1–11. https://doi.org/10.3389/fpls.2016.01350
  30. Wang L., Zhang Y., Zhu X., Zhu X., Li D., Zhang X., Gao Y., Xiao G., Wei X., Zhang X. 2017. Development of an SSR-based genetic map in sesame and identification of quantitative trait loci associated with charcoal rot resistance. Scientific Reports, 7(8349): 1–8. https://doi.org/10.1038/s41598-017-08858-2
  31. Yin B., Wang H., Zhu P., Weng S., He J., Li C. 2019. A Polymorphic (CT)n-SSR Influences the Activity of the Litopenaeus vannamei IRF Gene Implicated in Viral Resistance. Frontiers in Genetics, 10(1257): 1–10. https://doi.org/10.3389/fgene.2019.01257
  32. Zhao X., Tan Z., Feng H., Yang R., Li M., Jiang J., Shen G., Yu R. 2011. Microsatellites in different Potyvirus genomes: survey and analysis. Gene, 488(1–2): 52–56. https://doi.org/10.1016/j.gene.2011.08.016