Ukr. Bot. J. 2022, 79(1): 27–34 https://doi.org/10.15407/ukrbotj79.01.027Cell Biology and Molecular Biology
Design of microsatellite markers for Schizophyllum commune (Agaricales, Basidiomycota) based on analysis of its genome
Boiko S.M.- Institute for Evolutionary Ecology, National Academy of Sciences of Ukraine
Abstract
Simple sequence repeats of DNA (SSRs) are the most popular source of genetic markers used in population genetics, phylogenetics, and genetic mapping. A large number of nucleotide repeats enriched in G and C were identified. 336 mononucleotide motifs with more than ten repeats were recorded. 2020 nucleotide repeats were identified, of which 97.4% are di- (68.2%) and trinucleotides (29.2%). The total number of unique SSR loci, to which primers pairs were developed, was 1920. PCR primer sequences for unique SSR loci of the S. commune genome are presented. Of the twenty-two SSR markers synthesized for the S. commune genome, amplicons formed 64% on freshly isolated DNA samples.
Keywords: genome, motif, primers, Schizophyllum commune, SSR markers
Full text: PDF (Ukr) 1.20M
References
- Andjelkovic V., Nikolic A., Kovacevic D., Mladenovic-Drinic S., Kravic N., Babic V., Bosev D. 2018. Conserving maize in gene banks: Changes in genetic diversity revealed by morphological and SSR markers. Chilean Journal of Agricultural Research, 78(1): 30–38. http://dx.doi.org/10.4067/S0718-58392018000100030
- Beier S., Thiel T., Münch T., Scholz U., Mascher M. 2017. MISA-web: a web server for microsatellite prediction. Bioinformatics, 33: 2583–2585. https://doi.org/10.1093/bioinformatics/btx198
- Boiko S.M. 2015. Ukrainian Botanical Journal, 72(3): 252–256. https://doi.org/10.15407/ukrbotj72.03.252
- Boiko S.M. 2018. Pool of endoglucanase genes in Schizophyllum commune Fr.: Fr. (Basidiomycetes) on the territory of Ukraine. Acta Biologica Szegediensis, 62(1): 53–59. https://doi.org/10.14232/abs.2018.1.53-59
- Chakraborty R., Kimmel M., Stivers D.N., Davison L.J., Deka R. 1997. Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proceedings of the National Academy of Sciences, 94(3): 1041–1046. https://doi.org/10.1073/pnas.94.3.1041
- Garbelotto M., Bruns T.D., Cobb E.W., Otrosina W.I. 1993. Differentiation of intersterility groups and geographic provenances among isolates of Heterobasidion annosum detected by random amplified polymorphic DNA assays. Canadian Journal of Botany, 71: 565–569. https://doi.org/10.1139/b93-063
- Gerber H.P., Seipel K., Georgiev O., Hofferer M., Hug M., Rusconi S., Schaffner W. 1994. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science, 263: 808–811. https://doi.org/10.1126/science.8303297
- Hefferon T.W., Groman J.D., Yurk C.E., Cutting G.R. 2004. A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing. Proceedings of the National Academy of Sciences, 101: 3504–3509. https://doi.org/10.1073/pnas.0400182101
- Huang H., Dane F., Kubisiak, T. 1998. Allozyme and RAPD analysis of the genetic diversity and geographic variation in wild populations of the American chestnut (Fagaceae). American Journal of Botany, 85(7): 1013–1021. https://doi.org/10.2307/2446368
- Karaoglu H., Lee C.M., Meyer W. 2005. Survey of simple sequence repeats in completed fungal genomes. Molecular Biology and Evolution, 22(3): 639–649. https://doi.org/10.1093/molbev/msi057
- Kashi Y., King D., Soller M. 1997. Simple sequence repeats as a source of quantitative genetic variation. Trends in Genetics, 13(2): 74–78. https://doi.org/10.1016/s0168-9525(97)01008-1
- Kashi Y., King D.G. 2006. Simple sequence repeats as advantageous mutators in evolution. Trends in Genetics, 22(5): 253–259. https://doi.org/10.1016/j.tig.2006.03.005
- Kim D.W., Nam J., Nguyen H., Lee J., Choi Y., Choi J. 2020. Draft Genome Sequence of the White-Rot Fungus Schizophyllum Commune IUM1114-SS01. Mycobiology, 49(1), 86–88. https://doi.org/10.1080/12298093.2020.1843222
- Kirungu J.N., Deng Y., Cai X., Magwanga R.O., Zhou Z., Wang X., Wang Y., Zhang Z., Wang K., Liu F. 2018. Simple sequence repeat (SSR) genetic linkage map of D genome diploid cotton derived from an interspecific cross between Gossypium davidsonii and Gossypium klotzschianum. International Journal of Molecular Sciences, 19(1), 204: 1–21. https://doi.org/10.3390/ijms19010204
- Koressaar T., Lepamets M., Kaplinski L., Raime K., Andreson R., Remm M. 2018. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics, 34(11): 1937–1938. https://doi.org/10.1093/bioinformatics/bty036
- Lagercrantz U., Ellegren H., Andersson L. 1993. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Research, 21(5): 1111–1115. https://doi.org/10.1093/nar/21.5.1111
- Lee H.Y., Raveendar S., An H., Oh Y.L., Jang K.Y., Kong W.S., Ryu H., So Y.S., Chung J.W. 2018. Development of polymorphic simple sequence repeat markers using highthroughput sequencing in button mushroom (Agaricus bisporus). Mycobiology, 46(4): 421–428. https://doi.org/10.1080/12298093.2018.1538072
- Li H., Wu S., Ma X., Chen W., Zhang J., Duan S., Gao Y., Kui L., Huang W., Wu P., Shi R., Li Y., Wang Y., Li J., Guo X., Luo X., Li Q., Xiong C., Liu H., Gui M., Dong Y. 2018. The Genome Sequences of 90 Mushrooms. Scientific reports, 8(9982): 1–5. https://doi.org/10.1038/s41598-018-28303-2
- Lim S., Notley-McRobb L., Lim M., Carter D.A. 2004. A comparison of the nature and abundance of microsatellites in 14 fungal genomes. Fungal Genetics and Biology, 41(11): 1025–1036. https://doi.org/10.1016/j.fgb.2004.08.004
- Liu J. X., Cai Y. N., Jiang W. Y., Li Y. G., Zhang Q. F., Pan H. Y. 2020. Population Structure and Genetic Diversity of Fungi Causing Rice Seedling Blight in Northeast China Based on Microsatellite Markers. Plant disease, 104(3): 868–874. https://doi.org/10.1094/PDIS-08-19-620-RE
- Mrazek J., Guo X., Shah A. 2007. Simple sequence repeats in prokaryotic genomes. Proceedings of the National Academy of Sciences of the United States of America, 104(20): 8472–8477. https://doi.org/10.1073/pnas.0702412104
- Ohm R.A., de Jong J.F., Lugones L.G., Aerts A., Kothe E., Stajich J.E., de Vries R.P., Record E., Levasseur A., Baker S.E., Bartholomew K.A., Coutinho P.M., Erdmann S., Fowler T.J., Gathman A.C., Lombard V., Henrissat B., Knabe N., Kües U., Lilly W.W., Lindquist E., Lucas S., Magnuson J.K., Piumi F., Raudaskoski M., Salamov A., Schmutz J., Schwarze F.W., van Kuyk P.A., Horton J.S., Grigoriev I.V., Wösten H.A. 2010. Genome sequence of the model mushroom Schizophyllum commune. Nature Biotechnology, 28(9): 957–963. https://doi.org/10.1038/nbt.1643
- Schllotteroer C., Amos B., Tautz D. 1991. Conservation of polymorphic simple sequence loci in cetacean species. Nature, 354: 63–65. https://doi.org/10.1038/354063a0
- Shakyawar S.K., Joshi B.K., Kumar D. 2009. SSR repeat dynamics in mitochondrial genomes of five domestic animal species. Bioinformation, 4(4): 158–163. https://doi.org/10.6026/97320630004158
- Singh A.K., Chaurasia S., Kumar S., Singh R., Kumari J., Yadav M.C., Singh N., Gaba S., Jacob S.R. 2018. Identification, analysis and development of salt responsive candidate gene based SSR markers in wheat. BMC Plant Biology, 18(249): 1–15. https://doi.org/10.1186/s12870-018-1476-1
- Stallings R.L, Ford A.F., Nelson D., Torney D.C., Hildebrand C.E., Moyzis R.K. 1991. Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genomics, 10: 807–815. https://doi.org/10.1016/0888-7543(91)90467-s
- Tautz D., Renz M. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic acids research, 12(10): 4127–4138. https://doi.org/10.1093/nar/12.10.4127
- Wang Y., Chen, M.J., Wang H., Wang J.-F., Bao D.P. 2014. Microsatellites in the genome of the edible mushroom, Volvariella volvacea. BioMed Research International, 2014(281912): 1–10. https://doi.org/10.1155/2014/281912
- Wang X., Wang L. 2016. GMATA: an integrated software package for genome-scale SSR mining, marker development and viewing. Frontiers in Plant Science, 7(1350): 1–11. https://doi.org/10.3389/fpls.2016.01350
- Wang L., Zhang Y., Zhu X., Zhu X., Li D., Zhang X., Gao Y., Xiao G., Wei X., Zhang X. 2017. Development of an SSR-based genetic map in sesame and identification of quantitative trait loci associated with charcoal rot resistance. Scientific Reports, 7(8349): 1–8. https://doi.org/10.1038/s41598-017-08858-2
- Yin B., Wang H., Zhu P., Weng S., He J., Li C. 2019. A Polymorphic (CT)n-SSR Influences the Activity of the Litopenaeus vannamei IRF Gene Implicated in Viral Resistance. Frontiers in Genetics, 10(1257): 1–10. https://doi.org/10.3389/fgene.2019.01257
- Zhao X., Tan Z., Feng H., Yang R., Li M., Jiang J., Shen G., Yu R. 2011. Microsatellites in different Potyvirus genomes: survey and analysis. Gene, 488(1–2): 52–56. https://doi.org/10.1016/j.gene.2011.08.016