Ukr. Bot. J. 2021, 78(6): 414–425 https://doi.org/10.15407/ukrbotj78.06.414Cell Biology and Molecular Biology
Genetic diversity of ribosomal loci (5S and 45S rDNA) and pSc119.2 repetitive DNA sequence among four species of Aegilops (Poaceae) from Algeria
Nourdine BAIK 1,2, Houda BANDOU 2, Miriam GONZALEZ GARCIA 3, Elena BENAVENTE 4, Juan Manuel VEGA 3- 1Laboratory of Valorization of Vegetal Resource and Food Security in Semi-Arid Areas, South West of Algeria, Department of Biology, Faculty Science of Nature and Life, Tahri Mohammed University of Bechar, Algeria
- 2Laboratoire de biologie et Physiologie des Organismes (LBPO), Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Alger, Algérie
- 3Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense, Madrid, Spain
- 4Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingenieros Agronomos, Universidad Politécnica, Madrid, Spain
Abstract
In continuation of our previous research we carried out the karyological investigation of 53 populations of four Aegilops species (A. geniculata, A. triuncialis, A. ventricosa, and A. neglecta) sampled in different eco-geographical habitats in Algeria. The genetic variability of the chromosomal DNA loci of the same collection of Aegilops is highlighted by the Fluorescence In Situ Hybridization technique (FISH) using three probes: 5S rDNA, 45S rDNA, and repetitive DNA (pSc119.2). We found that the two rDNA loci (5S and 45S) hybridized with some chromosomes and showed a large genetic polymorphism within and between the four Aegilops species, while the repetitive DNA sequences (pSc119.2) hybridized with all chromosomes and differentiated the populations of the mountains with a humid bioclimate from the populations of the steppe regions with an arid bioclimate. However, the transposition of the physical maps of the studied loci (5S rDNA, 45S rDNA, and pSc119.2) with those of other collections revealed the existence of new loci in Aegilops from Algeria.
Keywords: Aegilops, Algeria, cytogenetic markers, eco-geography, genetic diversity, plant genetic resources
Full text: PDF (Eng) 1.74M
References
- Abdolmalaki Z., Mirzaghaderi G., Mason A., Badaeva E.D. 2019. Molecular cytogenetic analysis reveals evolutionary relationships between polyploid Aegilops species. Plant Systematics and Evolution, 305: 459–475. https://doi.org/10.1007/s00606-019-01585-3
- Badaeva E.D., Friebe B., Gill B.S. 1996. Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S–26S ribosomal RNA gene families in diploid species. Genome, 39(6): 1150–1158. https://doi.org/10.1139/g96-145
- Badaeva E.D., Friebe B., Zoshchuk S.A., Zelenin A.V., Gill B.S. 1998. Molecular cytogenetic analysis of tetraploid and hexaploid Aegilops crassa. Chromosome Research, 6: 629–637. https://doi.org/10.1023/A:1009257527391
- Badaeva E.D., Amosova A.V., Muravenko O.V., Samatadze T.E., Chikida N.N., Zelenin A.V., Friebe B., Gill B.S. 2002. Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster. Plant Systematics and Evolution, 231: 163–190. https://www.jstor.org/stable/23644354
- Badaeva E.D., Amosova A.V., Samatadze T.E., Zoshchuk S.A., Chikida N., Zelenin A.V., Raupp W.J., Friebe B., Gill B.S. 2004. Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Systematics and Evolution, 246: 45–76. https://doi.org/10.1007/s00606-003-0072-4
- Badaeva E.D., Dedkova O.S., Zoshchuk S.A., Amosova A.V., Reader S.M., Bernard M. Zelenin A.V. 2011. Comparative analysis of the N-genome in diploid and polyploid Aegilops species. Chromosome Research, 19: 541–548. https://doi.org/10.1007/s10577-011-9211-x
- Baik N., Maamri M., Bandou H. 2017. Karyological study and meiotic analysis of four species of Aegilops (Poaceae) in Algeria. Caryologia, 70(4): 324–337. https://doi.org/10.1080/00087114.2017.1387340
- Bandou H., Rodriguez-Quijano M., Carrillo J.M., Branlard G., Zaharieva M., Monneveux P. 2009. Morphological and genetic variation in Aegilops geniculata Roth from Algeria. Plant Systematics and Evolution, 277: 85–97. https://doi.org/10.1007/s00606-008-0106-z
- Bedbrook R.J., Jones J., O'Dell M., Thompson R.J., Flavell R.B. 1980. A molecular description of telomeric heterochromatin in Secale species. Cell, 19: 545–560. https://doi.org/10.1016/0092-8674(80)90529-2
- Belyayev A., Raskina O. 2013. Chromosome evolution in marginal populations of Aegilops speltoides: causes and consequences. Annals of Botany, 111(4): 531–538. https://doi.org/10.1093/aob/mct023
- Chennaveeraiah M.S. 1960. Karyomorphologic and cytotaxonomic studies in Aegilops. Acta Horti Gotoburgensis, 23: 85–178.
- Cifuentes M., Benavente E. 2009. Wheat-alien metaphase I pairing of individual wheat genomes and D genome chromosomes in interspecific hybrids between Triticum aestivum L. and Aegilops geniculata Roth. Theoretical Applied Genetics, 119: 805–813. https://doi.org/10.1007/s00122-009-1090-6
- Fernandez-Calvin B., Orellana J. 1990. High molecular weight glutenin subunit variation in the Sitopsis section of Aegilops. Implications for the origin of the B genome of wheat. Heredity, 65: 455–463. https://doi.org/10.1038/hdy.1990.117
- Gerlach W.L., Bedbrook J.R. 1979. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acid Research, 7: 1869–1885. https://doi.org/10.1093/nar/7.7.1869
- Gerlach W.L., Dyer T.A. 1980. Sequence organization of the repeated units in the nucleus of wheat which contains 5S-rRNA genes. Nucleic Acid Research, 8: 4851–4865. https://doi.org/10.1093/nar/8.21.4851
- Giraldo P., Ruiz M., Rodríguez-Quijano M., Benavente E. 2016. Development and validation of chloroplast DNA markers to assist Aegilops geniculata and Aegilops neglecta germplasm management. Genetic Resources and Crop Evolution, 63: 401–407. https://doi.org/10.1007/s10722-016-0364-5
- Gonzalez-Garcia M., Cuacos M., González-Sánchez M., Puertas M.J., Vega J.M. 2011. Painting the rye genome with genome-specific sequences. Genome, 54: 555–564. https://doi.org/10.1139/g11-003
- Gorenflot R., Raicu P. 1980. Cytogénétique et évolution. Paris: Masson, 304 pp.
- Haider N., Nabulsi I. 2008. Identification of Aegilops L. species and Triticum aestivum L. based on chloroplast DNA. Genetic Resources and Crop Evolution, 55: 537–549. https://doi.org/10.1007/s10722-007-9259-9
- Kilian B., Mammen K., Millet E., Sharma R., Graner A., Salamini F., Hammer K., Zkan H. 2011. Aegilops. Chapter 1. In: Wild Crop Relatives: Genomic and Breeding Resources. Berlin; Heidelberg: Springer, pp. 1–76. https://doi.org/10.1007/978-3-642-14228-4_1
- Kimber G., Feldman M. 1987. Wild Wheat. An Introduction. Special Report 353, College of Agriculture, University of Missouri-Columbia, ii + 142 pp.
- Książczyk T., Taciak M., Zwierzykowski Z. 2010. Variability of ribosomal DNA sites in Festuca pratensis, Lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH. Journal of Applied Genetics, 51: 449–460. https://doi.org/10.1007/BF03208874
- Kwiatek M.H., Wiśniewska H., Apolinarska B. 2013. Cytogenetic analysis of Aegilops chromosomes, potentially usable in triticale (× Triticosecale Witt.) breeding. Journal of Applied Genetics, 54: 147–155. https://doi.org/10.1007/s13353-013-0133-5
- Leitch I.J., Heslop-Harrison S. 1992. Physical mapping of the 18s-5.8s-26s rRNA genes in barley by in situ hybridization. Genome, 35: 1013–1018 https://doi.org/10.1139/g92-155
- Levin D.A. 2002. The role of chromosomal change in plant evolution. New York: Oxford University Press, 226 pp.
- Linc G, Friebe BR, Kynast RG, Molnar-Lang M, Köszegi B, Sutka J, Gill BS: Molecular cytogenetic analysis of Aegilops cylindrica Host. Genome 1999, 42: 497–503. https://doi.org/10.1139/g98-151
- Mahjoub A., Abdellaoui R., Bannaceur M., Benbrahim N. 2010. Genetic diversity of Tunisian accessions of Aegilops geniculata Roth and durum wheats (Triticum durum Desf.) using RAPD markers. Acta Botanica Gallica, 157(1): 3–12.
- Maire R. 1955. Flore de l'Afrique du Nord, vol. 3. Paris: Le Chevalier, pp. 65–69.
- Mishima M., Ohmido N., Fukui K., Yahara T. 2002. Trends in site-number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae). Chromosoma, 110: 550–558. https://doi.org/10.1007/s00412-001-0175-z
- Otto S., Whitton J. 2000. Polyploid incidence and evolution. Annual Review of Genetics, 34: 401–437. https://doi.org/10.1146/annurev.genet.34.1.401
- Parisod C., Badaeva E.D. 2020. Chromosome restructuring among hybridizing wild wheats. New Phytologist, 226(5): 1263–1273. https://doi.org/10.1111/nph.16415
- POWO. 2021–onward. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/. Retrieved 23 December 2021.
- Quezel P., Santa S. 1962. Nouvelle flore de l'Algérie et des régions désertiques méridionales, vol. 1. Paris: Edition du CNRS, 558 pp.
- Ramsey J., Schemske D.W. 2002. Neopolyploidy in flowering plants. Annual Review of Ecology and Systematics, 33: 589–639. https://doi.org/10.1146/annurev.ecolsys.33.010802.150437
- Rodriguez-Quijano M., Nieto-Taladriz M.T., Carrillo J.M. 2000. Polymorphism of high molecular weight glutenin subunits in three species of Aegilops. Genetic Resources and Crop Evolution, 48: 599–607. https://doi.org/10.1023/A:1013868629640
- Salina E.A., Lim K.Y., Badaeva E.D., Shcherban A.B., Adonina I.G., Amosova A.V., Samatadze T.E., Vatolina T.Y., Zoshchuk S.A., Leitch A.R. 2006. Phylogenetic reconstruction of Aegilops and the evolution of Tendem repeats in the diploids and derived wheat polyploids. Genome, 49: 1023–1035. https://doi.org/10.1139/g06-050
- Sasanuma T., Chabane K., Endo T.R., Valkoun J. 2004. Characterization of genetic variation and phylogenetic relationships among diploid Aegilops species by AFLP: incongruity of chloroplast and nuclear data. Theoretical and Applied Genetics, 108: 612–618. https://doi.org/10.1007/s00122-003-1485-8
- Senyaninova-Korchagina M. 1932. Karyo-systematical investigation of the genus Aegilops L. Bulletin of Applied Botany, Genetics and Plant Breeding. Series 2, 1: 1–90.
- Soltis D.E., Soltis P.S. 1999. Polyploidy: recurrent formation and genome evolution. Trends in Ecology and Evolution, 14: 348–352. https://doi.org/10.1016/s0169-5347(99)01638-9
- Stewart P. 1974. Un nouveau climagramme pour l'Algérie et son application au barrage vert. Bulletin de la Société d'histoire naturelle de l'Afrique du nord, 65: 239–248.
- Sun X., Qian W., Hao S., Zhang A., Wang D. 2006. Characterization of HMW glutenin subunits from Aegilops searsii and identification of a novel variant HBM glutenin subunit. Theoretical and Applied Genetics, 113(4): 631–641. https://doi.org/10.1007/s00122-006-0327-x
- Van Slageren M.W. 1994. Wild Wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). ICARDA / Wageningen Agricultural University Papers, 94(7): 1–512.
- Zaharieva M., Gaulin E., Havaux M., Acevedo E., Monneveux P. 2001. Drought and heat responses in the wild wheat relative Aegilops geniculata Roth: potential interest for wheat improvement. Crop Science, 41: 1321–1329. https://doi.org/10.2135/cropsci2001.4141321x
- Zhang X.Y., Wang R., Dong Y.S. 1996. RAPD polymorphisms in Aegilops geniculata Roth. (Ae. ovata auct. non L.). Genetic Resources and Crop Evolution, 43: 429–433.