ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 5 of 6
Ukr. Bot. J. 2021, 78(3): 221–234
Cell Biology and Molecular Biology

Aquaporins in regulation of plant protective responses to drought

Ovrutska I.I.

Plasmolemma permeability is an integral indicator of the functional state of plant cells under stress. Aquaporins (AQPs), specialized transmembrane proteins that form water channels and play an important role in the adaptation of plants to adverse conditions and, in particular, to lack or excess of water, are involved in the formation of the response to drought. The main function of AQPs is to facilitate the movement of water across cell membranes and maintain aqueous cell homeostasis. Under stressful conditions, there is both an increase and decrease in the expression of individual aquaporin genes. Analysis of the data revealed differences in the expression of AQPs genes in stable and sensitive plant genotypes. It turned out that aquaporins in different stress-resistant varieties of the same species also respond differently to drought. The review provides brief information on the history of the discovery of aquaporins, the structure and function of these proteins, summarizes the latest information on the role of aquaporins in the regulation of metabolism and the response of plants to stressors, with particular emphasis on aquaporins in drought protection. The discovery and study of AQPs expands the possibilities of using genetic engineering methods for the selection of new plant species, in particular, more resistant to drought and salinization of the soil, as well as to increase their productivity. The use of aquaporins in biotechnology to improve drought resistance of various species has many prospects.

Keywords: aquaporins, gene expression, tolerant and sensitive plant genotypes, water stress

Full text: PDF (Ukr) 1.12M

  1. Agre P. 2006. The aquaporin water channels. Proceedings of the American Thoracic Society, 3(1): 5–13.
  2. Afzal Z., Howton T.C., Sun Y., Mukhtar M.S. 2016. The roles of aquaporins in plant stress responses. Journal of Developmental Biology, 4(1): 9.
  3. Alexandersson E., Fraysse L., Sjovall-Larsen S., Gustavsson S., Fellert M., Karlsson M., Johanson U., Kjellbom P. 2005. Whole gene family expression and drought stress regulation of aquaporins. Plant Molecular Biology, 59(3): 469–484.
  4. Alexandersson E., Danielson J.A., Rade J., Moparthi V.K., Fontes M., Kjellbom P., Johanson U. 2008. Transcriptional regulation of aquaporins in accessions of Arabidopsis in response to drought stress. Plant Journal, 61(4): 650–660.
  5. Almeida-Rodriguez A.M., Cooke J.E., Yeh F. Zwiazek J.J. 2010. Functional characterization of drought responsive aquaporins in Populus balsamifera and Populus simonii×balsamifera clones with different drought resistance strategies. Physiologia Plantarum, 140(4): 321–333.
  6. Anderberg H.I., Danielson J.Á.H., Johanson U. 2011. Algal MIPs, high diversity and conserved motifs. BMC Evolutionary Biology, 11(1): 110.
  7. Anderberg H.I., Per K., Urban J. 2012. Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in terrestrial plants. Frontiers in Plant Science, 3: 33.
  8. de-Andrade L.M, Nobile P.M., Ribeiro R.V., de-Oliveira J.F.N.C., Figueira A.V.O., Frigel L.T.M., Nunes D., Perecin D., Brito M.S., Pires R.C.M., Landell M.G.A., Creste S. 2016. Characterization of PIP2 aquaporins in Saccharum hybrids. Plant Gene, 5: 31–37.
  9. Aroca R., Porcel R., Ruiz-Lozano J.M. 2007. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist, 173(4): 808–816.
  10. Aroca R., Vernieri P., Ruiz-Lozano J.M. 2008. Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. Journal of Experimental Botany, 59(8): 2029–2041.
  11. Aroca R., Porcel R., Ruiz-Lozano J.M. 2012. Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany, 63 (1): 43–57.
  12. Ayadi M., Cavez D., Miled N., Chaumont F., Masmoudi K. 2011. Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiology and Biochemistry, 49(9): 1029–1039.
  13. Ayadi M., Brini F., Masmoudi K. 2019. Overexpression of a wheat aquaporin gene, TdPIP 2; 1, enhances salt and drought tolerance in transgenic durum wheat cv. Maali. International Journal of Molecular Sciences, 20(10): 2389.
  14. Azad A.K., Yoshikawa N., Ishikawa T., Sawa Y., Shibata H. 2012. Substitution of a single amino acid residue in the aromatic/arginine selectivity filter alters the transport profiles of tonoplast aquaporin homologs. Biochimica et Biophysica Acta, 818(1): 1–11.
  15. Bae E.K., Lee H., Lee J.S., Noh E.W. 2011. Drought, salt and wounding stress induce the expression of the plasma membrane intrinsic protein 1 gene in poplar (Populus alba × P. tremula var. glandulosa). Gene, 483(1-2): 43–48.
  16. Banerjee A., Roychoudhury A. 2020. The role of aquaporins during plant abiotic stress responses. In: Tripathi D.K., Chauhan D.K. et al. (Eds.), Plant Life under Changing Environment. Responses and Management. London, etc.: Academic Press / Elsevier, pp. 643–661.
  17. Bárzana G., Aroca R., Bienert G.P., Chaumont F., Ruiz-Lozano J.M. 2014. New insights into the regulation ofaquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Molecular Plant Microbe Interactions, 27(4): 349–363.
  18. Bárzana G., Carvajal M. 2020. Genetic regulation of water and nutrient transport in water stress tolerance in roots. Journal of Biotechnology, 324: 134–142.
  19. Beaudette P.C., Chlup M., Yee J., Emery R. 2007. Relationships of root conductivity and aquaporin gene expression in Pisum sativum: diurnal patterns and the response to HgCl2 and ABA. Journal of Experimental Botany, 58(6): 1291–1300.
  20. Beitz E., Wu B., Holm L.M., Schultz J.E., Zeuthen T. 2006. Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proceedings of the National Academy of Sciences of the USA, 103(2): 269–274.
  21. Benga G. 2009. Water channel proteins (later called aquaporins) and relatives: past, resent, and future. IUBMB Life, 61(2): 112–133.
  22. Bliuma D. 2010. Scientific Issue Ternopil Volodymyr Hnatiuk National Pedagogical University Series: Biology, 45(4): 3–8.
  23. Boursiac Y., Chen S., Luu D.T., Sorieul M., van den Dries N., Maurel C. 2005. Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiology, 139(2): 790–805.
  24. Carbrey J. M., P. Agre, 2009. Discovery of the Aquaporins and Development of the Field. In: Beitz E. (Ed.). Aquaporins (Series Handbook of Experimental Pharmacology, vol. 190). Berlin; Heidelberg: Springer, pp. 3–28.
  25. Chaumont F., Barrieu F., Jung R., Chrispeels M.J. 2000. Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiology, 122(4): 1025–1034.
  26. Chaumont F., Tyerman S.D. 2014. Aquaporins: highly regulated channels controlling plant water relations. Plant Physiology, 164(4): 1600–1618.
  27. Cui X.H., Hao F.S., Chen H., Chen J., Wang X.C. 2008. Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. Journal of Plant Research, 121(2): 207–214.
  28. Cuneo I.F., Barrios-Masias F., Knipfer T., Uretsky J., Reyes C., Lenain P., Brodersen C.R., Walker M.A., McElrone A.J. 2020. Differences in grapevine rootstock sensitivity and recovery from drought are linked to fine root cortical lacunae and root tip function. New Phytologist, 229(1): 272–283.
  29. Danielson J.A., Johanson U. 2008. Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biology, 8(1): 45.
  30. Danielson J.A., Johanson U. 2010. Phylogeny of major intrinsic proteins. Advances in Experimental Medicine and Biology, 679: 19–31.
  31. Demirevska K., Zasheva D., Dimitrov R., Simova-Stoilova L., Stamenova M., Feller U. 2009. Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. Acta Physiologiae Plantarum, 31(6): 11–29.
  32. Deshmukh R.K., Sonah H., Bélanger R.R., 2016. Plant Aquaporins: genome-wide identification, transcriptomics, proteomics, and advanced analytical tools. Frontiers in Plant Science, 7: 18–96.
  33. Ding L., Lu Z., Gao L., Guo S., Shen Q. 2018. Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress? Frontiers in Plant Science, 9: 1143
  34. Ehlert C., Maurel C., Tardieu F., Simonneau T. 2009. Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration. Plant Physiology, 150(2): 1093–1104.
  35. Fetter K., Van Wilder V., Moshelion M., Chaumont F. 2004. Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell, 16(1): 215–228.
  36. Flexas J., Ribas-CarbÓ M., Hanson D.T., Bota J., Otto B., Cifre J., McDowell N., Medrano H., Kaldenhoff R. 2006. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant Journal, 48(3): 427–439.
  37. Forrest K. L., Bhave M. 2008. The TIP and PIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features. Functional and Integrative Genomics, 8(2): 115–133.
  38. Galmés J., Pou A., Alsina M.M., Tomas M., Medrano H., Flexas J. 2007. Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta, 226(3): 671–681.
  39. Gambetta G.A., Knipfer T., Fricke W., McElrone A.J. 2017.
  40. Aquaporins and root water uptake. In: Chaumont F., Tyerman S. (Eds.), Plant Aquaporins, From Transport to Signaling. Cham: Springer, pp. 133–154.
  41. Gao Z., He X., Zhao B., Zhou C., Liang Y., Ge R., Shen Y., Huang Z. 2010. Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Physiology, 51(5): 767–775.
  42. Grondin A., Mauleon R., Vadez V., Henry A. 2016. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.). Plant, Cell & Environment, 39(2): 347–365.
  43. Hachez C., Zelazny E., Chaumont F. 2006. Modulating the expression of aquaporin genes in planta: a key to understand their physiological functions? Biochimica et Biophysica Acta (BBA) – Biomembranes, 1758(8): 1142–1156.
  44. Hachez C., Heinen R.B., Draye X., Chaumont F. 2008. The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation. Plant Molecular Biology, 68(4–5): 337–353.
  45. Heinen R.B., Ye Q., Chaumont F. 2009. Role of aquaporins in leaf physiology. Journal of Experimental Botany, 60(11): 2971–2985.
  46. Horie T., Kaneko T., Sugimoto G., Sasano S., Panda S.K., Shibasaka M., Katsuhara M. 2011. Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots. Plant Cell Physiology, 52(4): 663–675.
  47. Hub J.S., Grubmüller H., de Groot B.L. 2009. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? In: Beitz E. (Ed.). Aquaporins (Series Handbook of Experimental Pharmacology, vol. 190). Berlin; Heidelberg: Springer, pp. 57–76.
  48. Ishibashi K. 2006. Aquaporin superfamily with unusual npa boxes: S-aquaporins (superfamily, sip-like and subcellularaquaporins). Cellular and Molecular Biology (Noisy-le-Grand, France), 52(7): 20–27. PMID: 17543217
  49. Jang J.Y., Kim D.G., Kim Y.O., Kim J.S., Kang H. 2004. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Molecular Biology, 54(5): 713–725.
  50. Jang J.Y., Lee S.H., Rhee J.Y., Chung G.C., Ahn S.J., Kang H. 2007. Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Plant Molecular Biology, 64: 621–632.
  51. Jarzyniak K.M., Jasiński M. 2014. Membrane transporters and drought resistance – a complex issue. Frontiers in Plant Science, 5: 1–15.
  52. Johanson U., Karlsson M., Johansson I., Gustavsson S., Sjövall S., Fraysse L., Weig A.R., Kjellbom P. 2001. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology, 126(4): 1358–1369.
  53. Khan K., Agarwal P., Shanware A., Sane V.A. 2015. Heterologous expression of two Jatropha aquaporins imparts drought and salt tolerance and improves seed viability in transgenic Arabidopsis thaliana. PLoS ONE, 10(6): e0128866.
  54. Kirscht A., Kaptan S.S., Bienert G.P., Chaumont F., Nissen P., de Groot B.L., Kjellbom P., Gourdon P., Johanson U. 2016. Crystal structure of an ammonia-permeable aquaporin. PLoS Biology, 14(3): e1002411.
  55. Knipfer T., Besse M., Verdeil J.L., Fricke W. 2011. Aquaporin-facilitated water uptake in barley (Hordeum vulgare L.) roots. Journal of Experimental Botany, 62(12): 4115–4126.
  56. Kong W., Shaozong Y., Yulu W., Mohammed B., Xiaopeng F. 2017. Genome-wide identification and characterization of aquaporin gene family in Beta vulgaris. PeerJ, 5(333): e3747.
  57. Kumar D. 2021. Transcriptional insights into sugarcane aquaporin genes under water deficit conditions. Plant Cell Report: 1–12.
  58. Li G., Santoni V., Maurel C. 2014. Plant aquaporins: roles in plant physiology. Biochimica et Biophysica Acta, 1840(5): 1574–1582.
  59. Li D., Wu, Y., Ruan X., Li B., Zhu L., Wang H., Li X. 2009. Expressions of three cotton genes encoding the PIP proteins are regulated in root development and in response to stresses. Plant Cell Reports, 28(2): 291–300.
  60. Li J., Cai W. 2015. A ginseng PgTIP1 gene whose protein biological activity related to Ser128 residue confers faster growth and enhanced salt stress tolerance in Arabidopsis. Plant Science: an International Journal of Experimental Plant Biology, 234: 74–85.
  61. Lian H.-L., Yu X., Ye Q., Ding X.-S., Kitagawa Y., Kwak S.-S., Su W.-A., Tang Z.-C. 2004. The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiology, 45(4): 481–489.
  62. Liu L.H., Ludewig U., Gassert B., Frommer W.B., von Wire´n N. 2003. Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiology, 133(3): 1220–1228.
  63. Liu Q., Wang H., Zhang Z., Wu J., Feng Y., Zhu Z. 2009. Divergence in function and expression of the NOD26-like intrinsic proteins in plants. BMC Genomics, 10(1): 313.
  64. Liu Z., Xin M., Qin J., Peng H., Ni Z., Yao Y., Sun Q. 2015. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biology, 15(1): 152.
  65. Ma J.F., Yamaji N. 2008. Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 65(19): 3049–3057.
  66. Maeshima M. 2001. Tonoplast transporters: organization and function. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1): 469–497.
  67. Mahdieh M., Mostajeran A., Horie T., Katsuhara M. 2008. Drought stress alters water relations and expression of PIPtype aquaporin genes in Nicotiana tabacum plants. Plant Cell Physiology, 49(5): 801–813.
  68. Martinez-Ballesta M., Carvajal M. 2014. New challenges in plant aquaporin biotechnology. Plant Science: an International Journal of Experimental Plant Biology, 217–218: 71–77.
  69. Martins C.D.P.S., Pedrosa A.M., Du D., Gonçalves L.P., Yu Q., Gmitter F.G., Costa M.G.C. 2015. Genome-wide characterization and expression analysis of major intrinsic proteins during abiotic and biotic stresses in sweet orange (Citrus sinensis L. Osb.). PLoS One, 10(9): e0138786.
  70. Martre P., Morillon R., Barrieu F., North G.B., Nobel P.S., Chrispeels M.J. 2002. Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiology, 130: 2101–2110.
  71. Maurel C., Verdoucq L., Luu D.-T., Santoni V. 2008. Plant aquaporins: membrane channels with multiple integrated functions. Annual Review of Plant Biology, 59: 595–624.
  72. Maurel C., Boursiac Y., Luu D.T., Santoni V., Shahzad Z., Verdoucq L. 2015. Aquaporins in plants. Physiological Reviews, 95(4): 1321–1358.
  73. Mitani-Ueno N., Yamaji N., Zhao F.J., Ma J.F. 2011. The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. Journal of Experimental Botany, 62(12): 4391–4398.
  74. Molina C., Rotter B.R., Horres R., Udupa S.M., Besser B., Bellarmino L., Baum M., Matsumura H., Terauchi R., Kahl G., Winter P. 2008. SuperSAGE: the drought stressresponsive transcriptome of chickpea roots. BMC Genomics, 9: 553.
  75. Morgun V.V., Kiriziy D.A., Shadchina T.M. 2010. Physiology and biochemistry of cultivated plants, 42(1): 3–22. Available at:
  76. Morillon R., Maarten J., Chrispeels D. 2001.The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells. Proceedings of the National Academy of Sciences of the USA, 98(24): 14138–14143.
  77. Muto Y., Segami S., Hayashi H., Sakurai J., Murai-Hatano M., Hattori Y., Ashikari M., Maeshima M. 2011.Vacuolar proton pumps and aquaporins involved in rapid internode elongation of deep water rice. Bioscience, Biotechnology, and Biochemistry, 75(1): 114–122.
  78. Obroucheva N.V., Sinkevich I.A. 2010. Russian Journal of Plant Physiology, 57(2): 153–165.
  79. Ovrutska I.I., Kordyum E.L. 2019. PIP 2; 1 aquaporin gene expression in maize hybrids different for drought tolerance to water deficit. Reports of the National Academy of Sciences of Ukraine, 5: 97–101.
  80. Park W., Scheffler B.E., Bauer P.J., Campbell B.T. 2010. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biology, 10: 142.
  81. Peng Y., Lin W., Cai W., Arora R. 2007. Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta, 226(3): 729–740.
  82. Perrone I., Gambino G., Chitarra W., Vitali M., Pagliarani C., Riccomagno N., Balestrini R., Kaldenhoff R., Uehlein N., Gribaudo I., Schubert A., Lovisolo C. 2012. The grapevine root-specific aquaporin VvPIP 2; 4 N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress. Plant Physiology, 160(2): 965–977.
  83. Preston G.M., Carroll T.P., Guggino W.B., Agre P. 1992. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 256: 385–387.
  84. Pou A., Hipolito M., Jaume F., Stephen D.T. 2013. A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and rewatering. Plant, Cell and Environment, 36(4): 828–843.
  85. Prado K., Maurel C. 2013. Regulation of leaf hydraulics: from molecular to whole plant levels. Frontiers in Plant Science, 4: 255.
  86. Reddy K.S., Sekhar K.M., Reddy A.R. 2017. Genotypic variation in tolerance to drought stress is highly coordinated with hydraulic conductivity–photosynthesis interplay and aquaporin expression in field-grown mulberry (Morus spp.). Tree Physiology, 37(7): 926–937.
  87. Regon P., Panda P., Kshetrimayum E., Panda S.K. 2014. Genome-wide comparative analysis of tonoplast intrinsic protein (TIP) genes in plants. Functional & Integrative Genomics, 14(4): 617–629.
  88. Rizhsky L., Liang H., Shuman J., Shulaev V., Davletova S., Mittler R. 2004. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology,134(4): 1683–1696.
  89. Rodrigues M.I., Bravo J.P., Sassaki F.T., Severino F.E., Maia I.G. 2013. The tonoplast intrinsic aquaporin (TIP) subfamily of Eucalyptus grandis: characterization of EgTIP2, a root-specific and osmotic stress-responsive gene. Plant Science, 213: 106–113.
  90. Ruiz-Lozano J.M., del Mar Alguacil M., B´árzana G., Vernieri P., Aroca R. 2009. Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Molecular Biology, 70(5): 565–579.
  91. Sade N., Vinocur B.J., Diber A., Shatil A., Ronen G., Nissan H., Wallach R., Karchi H., Moshelion M. 2009. Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2; 2 a key to isohydric to anisohydric conversion? The New Phytologist, 181(3): 651–661.
  92. Sahitya U. L., Krishna M. S. R., Suneetha P. 2019. Integrated approaches to study the drought tolerance mechanism in hot pepper (Capsicum annuum L.). Physiology and Molecular Biology of Plants, 25(3): 637–647.
  93. Santos A.B., Mazzafera P. 2013. Aquaporins and the control of the water status in coffee plants. Theoretical and Experimental Plant Physiology, 25(2): 79–93.
  94. Secchi F., Pagliarani C., Zwieniecki M.A. 2017. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant, Cell and Environment, 40(6): 858–871.
  95. Shekoofa A., Sinclair T.R. 2018. Aquaporin activity to improve crop drought tolerance. Cells, 7(9): 123.
  96. Siefritz F., Biela A., Eckert M., Otto B., Uehlein N., Kaldenhoff R. 2001. The tobacco plasma membrane aquaporin NtAQP1. Journal of Experimental Botany, 52(363): 1953–1957.
  97. Siefritz F., Tyree M.T., Lovisolo C., Schubert A., Kaldenhoff R. 2002. PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell, 14(4): 869–876.
  98. Siemens J., Zwiazek J. 2004. Changes in root water flow properties of solution culture grown trembling aspen (Populus tremuloides) seedlings under different intensities of water-deficit stress. Physiologia Plantarum, 121(1): 44–49.
  99. Silva M.D., Silva R.L.O., Ferreira-Neto J.R.C., Guimarães A.C.R., Veiga D.T., Chabregas S.M., Burnquist W.L., Kahl G., Benko-Iseppon A.M., Kido E.A. 2013. Expression analysis of sugarcane aquaporin genes under water deficit. Journal of Nucleic Acids, 2013: 1–14.
  100. Sreedharan S., Shekhawat U.K.S., Ganapathi T.R. 2013. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1; 2 display high tolerance levels to different abiotic stresses. Plant Biotechnology Journal, 11(8): 942–952.
  101. Sutka M. R., Manzur M.E., Vitali V.A., Micheletto S., Amodeo G. 2016. Evidence for the involvement of hydraulic root or shoot adjustments as mechanisms underlying water deficit tolerance in two Sorghum bicolor genotypes. Journal of Plant Physiology, 192: 13–20.
  102. Uehlein N., Sperling H., Heckwolf M., Kaldenhoff R. 2012. The Arabidopsis aquaporin PIP1; 2 rules cellular CO2 uptake. Plant Cell Environment, 35(6): 1077–7083.
  103. Vandeleur R.K., Mayo G., Shelden M.C., Gilliham M., Kaiser B.N., Tyerman S.D. 2009. The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiology, 149(1): 445–460.
  104. Venkatesh J., Yu J-W., Park S.W. 2013. Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant Physiology and Biochemistry, 73: 392–404.
  105. Wang L.L., Chen A.P., Zhong N.Q., Liu N., Wu X.M., Wang F., Yang C.L., Romero M.F., Xia G.X. 2013. The Thellungiella salsuginea tonoplast aquaporin TsTIP1; 2 functions in protection against multiple abiotic stresses. Plant and Cell Physiology, 55(1): 148–161.
  106. Wang C., Hu H., Qin X., Zeise B., Xu D., Rappel W.J., Boron W.F., Schroeder J.I. 2016. Reconstitution of CO2 regulation of SLAC1 anion channel and function of CO2-permeable PIP 2; 1 aquaporin as CARBONIC ANHYDRASE 4 interactor. Plant Cell, 28(2): 568–582.
  107. Xu Y., Hu W., Liu J., Zhang J., Jia C., Miao H., Xu B., Jin Z. 2014. A banana aquaporin gene, MaPIP 1; 1, is involved in tolerance to drought and salt stresses. BMC Plant Biology, 14: 59.
  108. Yu Q.J., Hu Y.L., Li J.F., Wu Q., Lin Z.P. 2005. Sense and antisense expression of plasma membrane aquaporin BnPIP1 from Brassica napus in tobacco and its effect on plant drought resistance. Plant Science, 169(4): 647–656.
  109. Yu G., Li J., Sun X., Zhang X., Liu J., Pan H. 2015. Overexpression of AcNIP 5; 1, a novel nodulin-like intrinsic protein from halophyte Atriplex canescens, enhances sensitivity to salinity and improves drought tolerance in Arabidopsis. Plant Molecular Biology Reporter, 33(6): 1–12.
  110. Zhu J.K. 2016. Abiotic stress signalling and responses in plants. Cell, 167(2): 313–324.
  111. Zhuang L., Liu M., Yuan X., Yang Z., Huang B., Burgess P., Jespersen D., Keough J. 2015. Physiological effects of aquaporin in regulating drought tolerance through overexpressing of Festuca arundinacea aquaporin gene FaPIP2; 1. Journal of the American Society for Horticultural Science, 140(5): 404–412.
  112. Zwiazek J.J., Xu H., Tan X., Navarro-Rodenas A., Morte A. 2017. Significance of oxygen transport through aquaporins. Scientific Reports, 7: 40411.