Ukr. Bot. J. 2021, 78(3): 163–175 https://doi.org/10.15407/ukrbotj78.03.163Vegetation Science, Ecology, Conservation
Gradient analysis of soil-plant interactions from the alpine-nival ecotone to the snowline on slopes of the Central Great Caucasus (Kazbegi Region, Georgia)
Jolokhava T.1,2,3, Abdaladze O.1, Gigauri K.1,6, Kikvidze Z.4,5- 1School of Natural Sciences and Medicine, Institute of Ecology, Ilia State University, K. Cholokashvili Ave. 3/5, Tbilisi 0162, Georgia
- 2Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, I. Chavchavadze Ave. 3, Tbilisi 0179, Georgia
- 3Ministry of Environmental Protection and Agriculture of Georgia, Science-Research Centre of Agriculture, Soil Fertility Division, Marshal Gelovani Ave. 6, Tbilisi 0160, Georgia
- 4Institute of Ethnobiology and Socio-ecology, Ilia State University, K. Cholokashvili Ave. 3/5, Tbilisi 0162, Georgia
- 5Institute of Botany, Ilia State University, Botanikuri Str. 1, Tbilisi 0105, Georgia
- 6Georgian Institute of Public Affairs, School of Government, Ietim Gurji Str. 9, Tbilisi 0105, Georgia
Abstract
Alpine ecosystems are especially sensitive to climatic changes which affect the relationships among glaciers, snow, vegetation and soils. Our aim was to examine how the variation in the abiotic environment affected soil properties and plant species distribution at regional and local scales. We sampled soil and vegetation along two transects set on the opposite-facing slopes (North versus South), from the alpine-nival ecotone to the snowline (Central Great Caucasus, Kazbegi, Georgia). We measured also soil temperature and controlled for the slope inclination. Multivariate ordination methods were used to link abiotic factors, soil properties and plant species distribution along the gradients. We found that ordination models were better resolved when soil properties were used as environmental variables instead of abiotic ones such as elevation, inclination and slope aspect. Soil pH and plant available potassium were the best predictors of plant species distribution in these habitats. We conclude that the models that account for the role of soils as a mediator between the abiotic environment and vegetation can more accurately describe plant species distribution at local and regional scales: a potentially important amendment with implications for the monitoring of the effects of climate change on vegetation at least in high mountain systems.
Keywords: abiotic variables, elevation gradient, soil properties, species composition, subnival-nival zone
Full text: PDF (Eng) 3.23M
References
- Abdaladze O., Nakhutsrishvili G., Batsatsashvili K., Gigauri Kh., Jolokhava T., Mikeladze G. 2015. Sensitive alpine plant communities to the global environmental changes (Kazbegi Region, the Central Great Caucasus). American Journal of Environmental Protection, 4: 93–100. https://doi.org/10.11648/j.ajep.s.2015040301.25
- Barry R.G. 2008. Mountain Weather and Climate, 3rd ed. Cambridge: Cambridge University Press, 506 pp. https://doi.org/10.1017/CBO9780511754753
- Baruck J., Nestroy O., Sartori G., Baize D., Traidl R., Vrščaj B., Bräm E., Gruber F.E., Heinrich K., Geitner C. 2016. Soil classification and mapping in the Alps: The current state and future challenges. Geoderma, 264: 312– 331. https://doi.org/10.1016/j.geoderma.2015.08.005
- Bezemer T., Lawson C.S., Hedlund K., Edwards A.R., Brook A.J., Igual J.M., Mortimer S.R., van Derputten W.H. 2006. Plant species and functional group effects on abiotic and microbial soil properties and plant–soil feedback responses in two grasslands. Journal of Ecology, 94: 893–904. https://doi.org/10.1111/j.1365-2745.2006.01158.x
- Billings W.D. 1974: Adaptations and origins of alpine plants. Arctic and Alpine Research, 6: 129–142. https://doi.org/10.2307/1550081
- Birkeland P.W., Shroba R.R., Burns S.F., Price A.B., Tonkin P.J. 2003. Integrating soils and geomorphology in mountains – an example from the Front Range of Colorado. Geomorphology, 55(1–4): 329–344. https://doi.org/10.1016/S0169-555X(03)00148-X
- Bliss L.C. 1971. Arctic and alpine plant life cycles. Annual Review of Ecology and Systematics, 2: 405–438. https://doi.org/10.1146/annurev.es.02.110171.002201
- Bowles T.M., Acosta-Martínez V., Calderón F., Jackson L.E. 2014. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biology and Biochemistry, 68: 252–262. https://doi.org/10.1016/j.soilbio.2013.10.004
- Brevik E.C. 2013. The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture, 3(3): 398–417. https://doi.org/10.3390/agriculture3030398
- Budzhak V.V., Didukh Ya.P. 2020. Ukrainian Botanical Journal, 77(6): 434–453. https://doi.org/10.15407/ukrbotj77.06.434
- Buri A., Grand S., Yashiro E., Adatte T., Spangenberg J.E., Pinto-Figueroa E., Verrecchia E., Guisan A. 2020. What are the most crucial soil variables for predicting the distribution of mountain plant species? A comprehensive study in the Swiss Alps. Journal of Biogeography, 47(5): 1143–1153. https://doi.org/10.1111/jbi.13803
- Chapin F.S., Shaver G.R., Giblin A.E., Nadelhoffer K.J., Laundre J.A. 1995. Responses of Arctic tundra to experimental and observed changes in climate. Ecology, 76: 694–71. https://doi.org/10.2307/1939337
- Chapin III F.S., Körner C. 1994. Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Trends in Ecology & Evolution, 9(2): 45–47. https://doi.org/10.1016/0169-347(94)90266-6
- Chase M.N., Johnson E.A. Johnson., Martin Y.E. 2012. The influence of geomorphic processes on plant distribution and abundance as reflected in plant tolerance curves. Ecological Monographs, 82: 429–447. https://doi.org/10.1890/11-2145.1
- Dahlgren R.A. 2006. Biogeochemical processes in soils and ecosystems: from landscape to molecular scale. Journal of Geochemical Exploration, 88: 186–189. https://doi.org/10.1016/j.gexplo.2005.08.035
- Devictor V., Mouillot D., Meynard C., Jiguet F., Thuiller W., Mouquet N. 2010. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecology Letters, 13(8): 1030–1040. https://doi.org/10.1111/j.1461-0248.2010.01493.x
- Donhauser J., Frey B. 2018. Alpine soil microbial ecology in a changing world. FEMS Microbiology Ecology, 94(9), fiy099. https://doi.org/10.1093/femsec/fiy099
- Eisenhauer N., Dobies T., Cesarz S., Hobbie S.E., Meyer R.J., Worm K., Reich P.B. 2013. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proceedings of the National Academy of Sciences, 110(17): 6889–6894. https://doi.org/10.1073/pnas.1217382110
- Gavlak R., Horneck D., Miller R.O., Kotuby-Amacher J. 2003. Soil, plant and water reference methods for the western region. Fort Collins, CO, USA: WCC-103 Publication, 206 pp.
- Geiger R., Aron T.R.H., Todhunter P. 1995. The Climate Near the Ground. Vieweg+Teubner Verlag: Springer, 528 pp. https://doi.org/10.1007/978-3-322-86582-3
- Gigauri K., Akhalkatsi M., Abdaladze O., Nakhutsrishvili G. 2016. Alpine plant distribution and thermic vegetation indicator on GLORIA summits in the Central Greater Caucasus. Pakistan Journal of Botany, 48(5): 1893–902.
- Gleason H.A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53(1): 7–26. https://doi.org/10.2307/2479933
- Grabherr G., Gottfried M., Gruber A., Pauli H. 1995. Patterns and current changes in alpine plant diversity. In: Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Eds F.S. Chapin, Ch. Korner. Berlin, Heidelberg: Springer, pp. 167–181. https://doi.org/10.1007/978-3-642-78966-3_12
- Hooper D.U., Bignell D.E., Brown V.K., Brussard L., Dangerfield J.M., Wall D.H. Wardle D.A., Coleman D.C., Giller K.E., Lavelle P., Van Der Putten W.H. 2000. Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems: Patterns, Mechanisms, and Feedbacks: We assess the evidence for correlation between aboveground and belowground diversity and conclude that a variety of mechanisms could lead to positive, negative, or no relationship— depending on the strength and type of interactions among species. Bioscience, 50(12): 1049–1061. https://doi.org/10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
- Huston M.A., Huston M.A. 1994. Biological diversity: the coexistence of species on changing landscapes. United Kingdom: Cambridge University Press, 615 pp.
- Jackson M.L. 2005. Soil chemical analysis: Advanced course. Madison, Wisconsin: Madison Libraries Parallel Press, 929 pp.
- Jenny H. 1994. Factors of soil formation: a system of quantitative pedology. New York: Dover Publication INC, 191 pp.
- Jolokhava T., Abdaladze O., Gadilia S., Kikvidze Z. 2020. Variable soil pH can drive changes in slope aspect preference of plants in alpine desert of the Central Great Caucasus (Kazbegi district, Georgia). Acta Oecologica, 105: 103582. https://doi.org/10.1016/j.actao.2020.103582
- Kardol P., Martijn Bezemer T., Van Der Putten W.H. 2006. Temporal variation in plant–soil feedback controls succession. Ecology Letters, 9(9): 1080–1088. https://doi.org/10.1111/j.1461-0248.2006.00953.x
- Kent M. 2011. Vegetation description and data analysis: a practical approach. London: John Wiley & Sons. 80 pp.
- Kharadze A.L. 1965. On the Subnival Zone of the Greater Caucasus. Notulae Systematicae ac Geographicae Intituti Botanici Thbilisiensis, 25: 103–114.
- Kikvidze Z. 1993. Plant species associations in alpine-subnival vegetation patches in the Central Caucasus. Journal of Vegetation Science, 4(3): 297–302. https://doi.org/10.2307/3235587
- Kikvidze Z., Nakhutsrishvili G. 1998. Facilitation in subnival vegetation patches. Journal of Vegetation Science, 9(2): 261–264. https://doi.org/10.2307/3237125
- Kikvidze Z., Jolokhava T., Bakhia A., Abdaladze O. 2020. Jumping the barrier: does a glacier tongue affect species distribution along the elevation gradient in the subnival and nival belts? A case study on Mt. Kazbegi, Georgia, Central Great Caucasus Mountains. Botanica Serbica, 44(2): 219– 229. https://doi.org/10.2298/BOTSERB2002219K
- Körner Ch., Paulsen J. 2017. A geostatistical and bioclimatological comparison of the Central Great Caucasus and the central Alps. In: Plant diversity in the Central Great Caucasus: a quantitative assessment. Eds G. Nakhutsrishvili, O. Abdaladze, K. Batsatsashvili, Ch. Körner, E. Spehn. Switzerland, Cham: Springer, pp. 1–9. https://doi.org/10.1007/978-3-319-55777-9_1
- Körner Ch. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems; with 47 tables. Switzerland: Springer Science & Business Media. 343 pp.
- Körner C. 2007. The use of 'altitude' in ecological research. Trends in Ecology & Evolution, 22(11): 569–574. https://doi.org/10.1016/j.tree.2007.09.006
- Körner Ch. 2011. Coldest place on Earth with angiosperm plant life. Alpine Botany, 121: 11–22. https://doi.org/10.1007/s00035-011-0089-1
- Körner Ch., Larcher W. 1988. Plant life in cold climates. In: Symposia of the Society for Experimental Biology, 42: 25–57.
- Legendre P., Gallagher E.D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia, 129(2): 271–280. https://doi.org/10.1007/s004420100716
- Lomolino M.V. 2001. Elevation gradients of species-density: historical and prospective views. Global Ecology and Biogeography, 10: 3–13. https://doi.org/10.1046/j.1466-822x.2001.00229.x
- Lyon J., Gross N.M. 2005. Patterns of plant diversity and plant–environmental relationships across three riparian corridors. Forest Ecology and Management, 204(2–3): 267–278. https://doi.org/10.1016/j.foreco.2004.09.019
- Manley G. 1961. Effects of climate on vegetation. Nature, 192: 5. https://doi.org/10.1038/192005a0
- Maruashvili L. 1971. Geomorphology of Georgia. Tbilisi: Metsniereba, 346 pp.
- Mason R.L., Gunst R.F. 1985. Outlier-induced collinearities. Technometrics, 27(4), 401–407. https://doi.org/10.1080/00401706.1985.10488079
- Michalet R., Gandoy C., Joud D., Pagès J.P., Choler P. 2002. Plant community composition and biomass on calcareous and siliceous substrates in the northern French Alps: comparative effects of soil chemistry and water status. Arctic, Antarctic, and Alpine Research, 34(1): 102–113. https://doi.org/10.1080/15230430.2002.12003474
- Molau U., Nordenhall U., Eriksen B. 2005. Onset of flowering and climate variability in an alpine landscape: a 10-year study from Swedish Lapland. American Journal of Botany, 92: 422–431. https://doi.org/10.3732/ajb.92.3.422
- Mooney H.A., Billings W.D. 1965. Effects of altitude on carbohydrate content of mountain plants. Ecology, 46: 750–751. https://doi.org/10.2307/1935021
- Motzkin G., Wilson P., Foster D.R., Allen A. 1999. Vegetation patterns in heterogeneous landscapes: the importance of history and environment. Journal of Vegetation Science, 10: 903–920. https://doi.org/10.2307/3237315
- Nagy L., Grabherr G., Körner C., Thompson D.B.A. 2003. Alpine biodiversity in space and time: a synthesis. Berlin: Springer, Berlin, Heidelberg, 453–464 pp. https://doi.org/10.1007/978-3-642-18967-8_29
- Nakhutsrishvili G.S. 1998. The vegetation of the subnival belt of the Caucasus Mountains. Arctic and Alpine Research, 30(3): 222–226. https://doi.org/10.2307/1551969
- Nakhutsrishvili G. 2003. High-mountain vegetation of the Caucasus region. In: Alpine Biodiversity in Europe. Eds L. Nagy, G. Grabherr, Ch. Korner, D.B.A. Thompson. Berlin-Heidelberg: Springer, pp. 93–103.
- Nakhutsrishvili G. 2012. The vegetation of Georgia (South Caucasus). Berlin-Heidelberg: Springer, 235 pp. https://doi.org/10.1007/978-3-642-29915-5
- Nakhutsrishvili G., Gamtsemlidze Z.G. 1984. Plant life in extreme environment of high mountains. Leningrad: Nauka, 123 pp.
- Nakhutsrishvili G., Gagnidze R. 1999. Die subnivale und nivale Hochgebirgsvegetation des Kaukasus. Phytocoenosis, 11: 173–183.
- Nakhutsrishvili G., Abdaladze O. 2017a. Plant diversity of the Central Great Caucasus. In: Plant diversity in the Central Great Caucasus: a quantitative assessment. Eds G. Nakhutsrishvili, O. Abdaladze, K. Batsatsashvili, Ch. Körner, E. Spehn. Switzerland, Cham: Springer, pp. 17–132. https://doi.org/10.1007/978-3-319-55777-9_3
- Nakhutsrishvili G., Abdaladze O. 2017b. Vegetation of the Central Great Caucasus along W-E and N-S transects. In: Plant diversity in the Central Great Caucasus: a quantitative assessment. Eds G. Nakhutsrishvili, O. Abdaladze, K. Batsatsashvili, Ch. Körner, E. Spehn. Switzerland, Cham: Springer, pp. 11–16. https://doi.org/10.1007/978-3-319-55777-9_2
- Nakhutsrishvili G., Abdaladze O., Kikodze A. 2005. Khevi: Kazbegi Region. Tbilisi: Institute of Botany, 54 pp.
- Nakhutsrishvili G., Abdaladze O., Akhalkatsi M. 2006. Biotope types of the treeline of the Central Greater Caucasus. In: Nature Conservation: Concepts and Practice. Eds D. Gafta, J. Akeroyd. Berlin-Heidelberg: Springer, pp. 211–225. https://doi.org/10.1007/978-3-540-47229-2_22
- Norman R.J., Stucki J.W. 1981. The determination of nitrate and nitrite in soil extracts by ultraviolet spectrophotometry. Soil Science Society of America Journal, 45(2): 347–353. https://doi.org/10.2136/sssaj1981.03615995004500020024x
- Olsen S.R. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). Washington: US Department of Agriculture. 1–19 pp.
- Palmer M.W. 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology, 74(8): 2215–2230. https://doi.org/10.2307/1939575
- Palmer M.W. 2004. Ordination methods – an overview. Oklahoma, Stillwater: Botany Department, Oklahoma State University, 27 pp.
- Pansu M., Gautheyrou J. 2007. Handbook of soil analysis: mineralogical, organic and inorganic methods. New York: Springer, Berlin, Heidelberg, 993 pp.
- Peterson K.M., Billings W.D. 1982: Growth of alpine plants under controlled drought. Arctic and Alpine Research, 14: 189–194. https://doi.org/10.2307/1551151
- Praeg N., Pauli H., Illmer P. 2019. Microbial diversity in bulk and rhizosphere soil of Ranunculus glacialis along a high-alpine altitudinal gradient. Frontiers in microbiology, 10: 1429. https://doi.org/10.3389/fmicb.2019.01429
- Rezaei S.A., Gilkes R.J. 2005. The effects of landscape attributes and plant community on soil chemical properties in rangelands. Geoderma, 125(1–2): 167–176. https://doi.org/10.1016/j.geoderma.2004.07.010
- Sakai A., Larcher W. 1987. Frost survival of plants: Responses and adaptation to freezing stress. Berlin: Springer-Verlag, 321 pp. https://doi.org/10.1007/978-3-642-71745-1
- Scherrer D., Körner C. 2010. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology, 16(9): 2602–2613. https://doi.org/10.1111/j.1365-2486.2009.02122.x
- Schulte E.E., Hopkins B.G. 1996. Estimation of soil organic matter by weight loss-on-ignition. Analysis and interpretation, 1(46): 21–31. https://doi.org/10.2136/sssaspecpub46.c3
- Solomon J.C., Shulkina T.V., Schatz G.E. 2014. Red list of the endemic plants of the Caucasus: Armenia, Azerbaijan, Georgia, Iran, Russia, and Turkey. St. Louis, Missouri: Missouri Botanical Garden Press, 451 pp.
- Stuanes A.O., Ogner G., Opem M. 1984. Ammonium nitrate as extractant for soil exchangeable cations, exchangeable acidity and aluminum. Communications in Soil Science and Plant Analysis, 15(7): 773–778. https://doi.org/10.1080/00103628409367516
- Talakhadze G.R., Urushadze T.F., Kirvalidze R.I. 1985. Pochvovedenie, 1: 156–159.
- Tale K.S., Ingole S. 2015. A review on role of physico-chemical properties in soil quality. Chemical Science Review and Letters, 4(13): 57–66.
- Tan K.H. 1995. Soil sampling, preparation, and analysis. New York: CRC Press, 84 pp.
- IPNI. The International Plant Name Index. 2012–onward. Available at: http://www.ipni.org (Accessed 20 December 2017).
- Tudela-Isanta M., Ladouceur E., Wijayasinghe M., Pritchard H.W., Mondoni A. 2018. The seed germination niche limits the distribution of some plant species in calcareous or siliceous alpine bedrocks. Alpine Botany, 128(1): 83–95. https://doi.org/10.1007/s00035-018-0199-0
- Urushadze T. 1989. Mountain soils of the USSR. Moscow: Agropromizdat, 272 pp.
- Wisz M.S., Pottier J., Kissling W.D., Pellissier L., Lenoir J., Damgaard C.F., Dormann C.F., Forchhammer M.C., Grytnes J.A., Guisan A., Heikkinen R.K. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88(1): 15–30. https://doi.org/10.1111/j.1469-185X.2012.00235.x