ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 1 of 6
Up
Ukr. Bot. J. 2021, 78(3): 163–175
https://doi.org/10.15407/ukrbotj78.03.163
Vegetation Science, Ecology, Conservation

Gradient analysis of soil-plant interactions from the alpine-nival ecotone to the snowline on slopes of the Central Great Caucasus (Kazbegi Region, Georgia)

Jolokhava T.1,2,3, Abdaladze O.1, Gigauri K.1,6, Kikvidze Z.4,5
Abstract

Alpine ecosystems are especially sensitive to climatic changes which affect the relationships among glaciers, snow, vegetation and soils. Our aim was to examine how the variation in the abiotic environment affected soil properties and plant species distribution at regional and local scales. We sampled soil and vegetation along two transects set on the opposite-facing slopes (North versus South), from the alpine-nival ecotone to the snowline (Central Great Caucasus, Kazbegi, Georgia). We measured also soil temperature and controlled for the slope inclination. Multivariate ordination methods were used to link abiotic factors, soil properties and plant species distribution along the gradients. We found that ordination models were better resolved when soil properties were used as environmental variables instead of abiotic ones such as elevation, inclination and slope aspect. Soil pH and plant available potassium were the best predictors of plant species distribution in these habitats. We conclude that the models that account for the role of soils as a mediator between the abiotic environment and vegetation can more accurately describe plant species distribution at local and regional scales: a potentially important amendment with implications for the monitoring of the effects of climate change on vegetation at least in high mountain systems.

Keywords: abiotic variables, elevation gradient, soil properties, species composition, subnival-nival zone

Full text: PDF (Eng) 3.23M

References
  1. Abdaladze O., Nakhutsrishvili G., Batsatsashvili K., Gigauri Kh., Jolokhava T., Mikeladze G. 2015. Sensitive alpine plant communities to the global environmental changes (Kazbegi Region, the Central Great Caucasus). American Journal of Environmental Protection, 4: 93–100. https://doi.org/10.11648/j.ajep.s.2015040301.25
  2. Barry R.G. 2008. Mountain Weather and Climate, 3rd ed. Cambridge: Cambridge University Press, 506 pp. https://doi.org/10.1017/CBO9780511754753
  3. Baruck J., Nestroy O., Sartori G., Baize D., Traidl R., Vrščaj B., Bräm E., Gruber F.E., Heinrich K., Geitner C. 2016. Soil classification and mapping in the Alps: The current state and future challenges. Geoderma, 264: 312– 331. https://doi.org/10.1016/j.geoderma.2015.08.005
  4. Bezemer T., Lawson C.S., Hedlund K., Edwards A.R., Brook A.J., Igual J.M., Mortimer S.R., van Derputten W.H. 2006. Plant species and functional group effects on abiotic and microbial soil properties and plant–soil feedback responses in two grasslands. Journal of Ecology, 94: 893–904. https://doi.org/10.1111/j.1365-2745.2006.01158.x
  5. Billings W.D. 1974: Adaptations and origins of alpine plants. Arctic and Alpine Research, 6: 129–142. https://doi.org/10.2307/1550081
  6. Birkeland P.W., Shroba R.R., Burns S.F., Price A.B., Tonkin P.J. 2003. Integrating soils and geomorphology in mountains – an example from the Front Range of Colorado. Geomorphology, 55(1–4): 329–344. https://doi.org/10.1016/S0169-555X(03)00148-X
  7. Bliss L.C. 1971. Arctic and alpine plant life cycles. Annual Review of Ecology and Systematics, 2: 405–438. https://doi.org/10.1146/annurev.es.02.110171.002201
  8. Bowles T.M., Acosta-Martínez V., Calderón F., Jackson L.E. 2014. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biology and Biochemistry, 68: 252–262. https://doi.org/10.1016/j.soilbio.2013.10.004
  9. Brevik E.C. 2013. The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture, 3(3): 398–417. https://doi.org/10.3390/agriculture3030398
  10. Budzhak V.V., Didukh Ya.P. 2020. Ukrainian Botanical Journal, 77(6): 434–453. https://doi.org/10.15407/ukrbotj77.06.434
  11. Buri A., Grand S., Yashiro E., Adatte T., Spangenberg J.E., Pinto-Figueroa E., Verrecchia E., Guisan A. 2020. What are the most crucial soil variables for predicting the distribution of mountain plant species? A comprehensive study in the Swiss Alps. Journal of Biogeography, 47(5): 1143–1153. https://doi.org/10.1111/jbi.13803
  12. Chapin F.S., Shaver G.R., Giblin A.E., Nadelhoffer K.J., Laundre J.A. 1995. Responses of Arctic tundra to experimental and observed changes in climate. Ecology, 76: 694–71. https://doi.org/10.2307/1939337
  13. Chapin III F.S., Körner C. 1994. Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Trends in Ecology & Evolution, 9(2): 45–47. https://doi.org/10.1016/0169-347(94)90266-6
  14. Chase M.N., Johnson E.A. Johnson., Martin Y.E. 2012. The influence of geomorphic processes on plant distribution and abundance as reflected in plant tolerance curves. Ecological Monographs, 82: 429–447. https://doi.org/10.1890/11-2145.1
  15. Dahlgren R.A. 2006. Biogeochemical processes in soils and ecosystems: from landscape to molecular scale. Journal of Geochemical Exploration, 88: 186–189. https://doi.org/10.1016/j.gexplo.2005.08.035
  16. Devictor V., Mouillot D., Meynard C., Jiguet F., Thuiller W., Mouquet N. 2010. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecology Letters, 13(8): 1030–1040. https://doi.org/10.1111/j.1461-0248.2010.01493.x
  17. Donhauser J., Frey B. 2018. Alpine soil microbial ecology in a changing world. FEMS Microbiology Ecology, 94(9), fiy099. https://doi.org/10.1093/femsec/fiy099
  18. Eisenhauer N., Dobies T., Cesarz S., Hobbie S.E., Meyer R.J., Worm K., Reich P.B. 2013. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proceedings of the National Academy of Sciences, 110(17): 6889–6894. https://doi.org/10.1073/pnas.1217382110
  19. Gavlak R., Horneck D., Miller R.O., Kotuby-Amacher J. 2003. Soil, plant and water reference methods for the western region. Fort Collins, CO, USA: WCC-103 Publication, 206 pp.
  20. Geiger R., Aron T.R.H., Todhunter P. 1995. The Climate Near the Ground. Vieweg+Teubner Verlag: Springer, 528 pp. https://doi.org/10.1007/978-3-322-86582-3
  21. Gigauri K., Akhalkatsi M., Abdaladze O., Nakhutsrishvili G. 2016. Alpine plant distribution and thermic vegetation indicator on GLORIA summits in the Central Greater Caucasus. Pakistan Journal of Botany, 48(5): 1893–902.
  22. Gleason H.A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53(1): 7–26. https://doi.org/10.2307/2479933
  23. Grabherr G., Gottfried M., Gruber A., Pauli H. 1995. Patterns and current changes in alpine plant diversity. In: Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Eds F.S. Chapin, Ch. Korner. Berlin, Heidelberg: Springer, pp. 167–181. https://doi.org/10.1007/978-3-642-78966-3_12
  24. Hooper D.U., Bignell D.E., Brown V.K., Brussard L., Dangerfield J.M., Wall D.H. Wardle D.A., Coleman D.C., Giller K.E., Lavelle P., Van Der Putten W.H. 2000. Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems: Patterns, Mechanisms, and Feedbacks: We assess the evidence for correlation between aboveground and belowground diversity and conclude that a variety of mechanisms could lead to positive, negative, or no relationship— depending on the strength and type of interactions among species. Bioscience, 50(12): 1049–1061. https://doi.org/10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
  25. Huston M.A., Huston M.A. 1994. Biological diversity: the coexistence of species on changing landscapes. United Kingdom: Cambridge University Press, 615 pp.
  26. Jackson M.L. 2005. Soil chemical analysis: Advanced course. Madison, Wisconsin: Madison Libraries Parallel Press, 929 pp.
  27. Jenny H. 1994. Factors of soil formation: a system of quantitative pedology. New York: Dover Publication INC, 191 pp.
  28. Jolokhava T., Abdaladze O., Gadilia S., Kikvidze Z. 2020. Variable soil pH can drive changes in slope aspect preference of plants in alpine desert of the Central Great Caucasus (Kazbegi district, Georgia). Acta Oecologica, 105: 103582. https://doi.org/10.1016/j.actao.2020.103582
  29. Kardol P., Martijn Bezemer T., Van Der Putten W.H. 2006. Temporal variation in plant–soil feedback controls succession. Ecology Letters, 9(9): 1080–1088. https://doi.org/10.1111/j.1461-0248.2006.00953.x
  30. Kent M. 2011. Vegetation description and data analysis: a practical approach. London: John Wiley & Sons. 80 pp.
  31. Kharadze A.L. 1965. On the Subnival Zone of the Greater Caucasus. Notulae Systematicae ac Geographicae Intituti Botanici Thbilisiensis, 25: 103–114.
  32. Kikvidze Z. 1993. Plant species associations in alpine-subnival vegetation patches in the Central Caucasus. Journal of Vegetation Science, 4(3): 297–302. https://doi.org/10.2307/3235587
  33. Kikvidze Z., Nakhutsrishvili G. 1998. Facilitation in subnival vegetation patches. Journal of Vegetation Science, 9(2): 261–264. https://doi.org/10.2307/3237125
  34. Kikvidze Z., Jolokhava T., Bakhia A., Abdaladze O. 2020. Jumping the barrier: does a glacier tongue affect species distribution along the elevation gradient in the subnival and nival belts? A case study on Mt. Kazbegi, Georgia, Central Great Caucasus Mountains. Botanica Serbica, 44(2): 219– 229. https://doi.org/10.2298/BOTSERB2002219K
  35. Körner Ch., Paulsen J. 2017. A geostatistical and bioclimatological comparison of the Central Great Caucasus and the central Alps. In: Plant diversity in the Central Great Caucasus: a quantitative assessment. Eds G. Nakhutsrishvili, O. Abdaladze, K. Batsatsashvili, Ch. Körner, E. Spehn. Switzerland, Cham: Springer, pp. 1–9. https://doi.org/10.1007/978-3-319-55777-9_1
  36. Körner Ch. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems; with 47 tables. Switzerland: Springer Science & Business Media. 343 pp.
  37. Körner C. 2007. The use of 'altitude' in ecological research. Trends in Ecology & Evolution, 22(11): 569–574. https://doi.org/10.1016/j.tree.2007.09.006
  38. Körner Ch. 2011. Coldest place on Earth with angiosperm plant life. Alpine Botany, 121: 11–22. https://doi.org/10.1007/s00035-011-0089-1
  39. Körner Ch., Larcher W. 1988. Plant life in cold climates. In: Symposia of the Society for Experimental Biology, 42: 25–57.
  40. Legendre P., Gallagher E.D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia, 129(2): 271–280. https://doi.org/10.1007/s004420100716
  41. Lomolino M.V. 2001. Elevation gradients of species-density: historical and prospective views. Global Ecology and Biogeography, 10: 3–13. https://doi.org/10.1046/j.1466-822x.2001.00229.x
  42. Lyon J., Gross N.M. 2005. Patterns of plant diversity and plant–environmental relationships across three riparian corridors. Forest Ecology and Management, 204(2–3): 267–278. https://doi.org/10.1016/j.foreco.2004.09.019
  43. Manley G. 1961. Effects of climate on vegetation. Nature, 192: 5. https://doi.org/10.1038/192005a0
  44. Maruashvili L. 1971. Geomorphology of Georgia. Tbilisi: Metsniereba, 346 pp.
  45. Mason R.L., Gunst R.F. 1985. Outlier-induced collinearities. Technometrics, 27(4), 401–407. https://doi.org/10.1080/00401706.1985.10488079
  46. Michalet R., Gandoy C., Joud D., Pagès J.P., Choler P. 2002. Plant community composition and biomass on calcareous and siliceous substrates in the northern French Alps: comparative effects of soil chemistry and water status. Arctic, Antarctic, and Alpine Research, 34(1): 102–113. https://doi.org/10.1080/15230430.2002.12003474
  47. Molau U., Nordenhall U., Eriksen B. 2005. Onset of flowering and climate variability in an alpine landscape: a 10-year study from Swedish Lapland. American Journal of Botany, 92: 422–431. https://doi.org/10.3732/ajb.92.3.422
  48. Mooney H.A., Billings W.D. 1965. Effects of altitude on carbohydrate content of mountain plants. Ecology, 46: 750–751. https://doi.org/10.2307/1935021
  49. Motzkin G., Wilson P., Foster D.R., Allen A. 1999. Vegetation patterns in heterogeneous landscapes: the importance of history and environment. Journal of Vegetation Science, 10: 903–920. https://doi.org/10.2307/3237315
  50. Nagy L., Grabherr G., Körner C., Thompson D.B.A. 2003. Alpine biodiversity in space and time: a synthesis. Berlin: Springer, Berlin, Heidelberg, 453–464 pp. https://doi.org/10.1007/978-3-642-18967-8_29
  51. Nakhutsrishvili G.S. 1998. The vegetation of the subnival belt of the Caucasus Mountains. Arctic and Alpine Research, 30(3): 222–226. https://doi.org/10.2307/1551969
  52. Nakhutsrishvili G. 2003. High-mountain vegetation of the Caucasus region. In: Alpine Biodiversity in Europe. Eds L. Nagy, G. Grabherr, Ch. Korner, D.B.A. Thompson. Berlin-Heidelberg: Springer, pp. 93–103.
  53. Nakhutsrishvili G. 2012. The vegetation of Georgia (South Caucasus). Berlin-Heidelberg: Springer, 235 pp. https://doi.org/10.1007/978-3-642-29915-5
  54. Nakhutsrishvili G., Gamtsemlidze Z.G. 1984. Plant life in extreme environment of high mountains. Leningrad: Nauka, 123 pp.
  55. Nakhutsrishvili G., Gagnidze R. 1999. Die subnivale und nivale Hochgebirgsvegetation des Kaukasus. Phytocoenosis, 11: 173–183.
  56. Nakhutsrishvili G., Abdaladze O. 2017a. Plant diversity of the Central Great Caucasus. In: Plant diversity in the Central Great Caucasus: a quantitative assessment. Eds G. Nakhutsrishvili, O. Abdaladze, K. Batsatsashvili, Ch. Körner, E. Spehn. Switzerland, Cham: Springer, pp. 17–132. https://doi.org/10.1007/978-3-319-55777-9_3
  57. Nakhutsrishvili G., Abdaladze O. 2017b. Vegetation of the Central Great Caucasus along W-E and N-S transects. In: Plant diversity in the Central Great Caucasus: a quantitative assessment. Eds G. Nakhutsrishvili, O. Abdaladze, K. Batsatsashvili, Ch. Körner, E. Spehn. Switzerland, Cham: Springer, pp. 11–16. https://doi.org/10.1007/978-3-319-55777-9_2
  58. Nakhutsrishvili G., Abdaladze O., Kikodze A. 2005. Khevi: Kazbegi Region. Tbilisi: Institute of Botany, 54 pp.
  59. Nakhutsrishvili G., Abdaladze O., Akhalkatsi M. 2006. Biotope types of the treeline of the Central Greater Caucasus. In: Nature Conservation: Concepts and Practice. Eds D. Gafta, J. Akeroyd. Berlin-Heidelberg: Springer, pp. 211–225. https://doi.org/10.1007/978-3-540-47229-2_22
  60. Norman R.J., Stucki J.W. 1981. The determination of nitrate and nitrite in soil extracts by ultraviolet spectrophotometry. Soil Science Society of America Journal, 45(2): 347–353. https://doi.org/10.2136/sssaj1981.03615995004500020024x
  61. Olsen S.R. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). Washington: US Department of Agriculture. 1–19 pp.
  62. Palmer M.W. 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology, 74(8): 2215–2230. https://doi.org/10.2307/1939575
  63. Palmer M.W. 2004. Ordination methodsan overview. Oklahoma, Stillwater: Botany Department, Oklahoma State University, 27 pp.
  64. Pansu M., Gautheyrou J. 2007. Handbook of soil analysis: mineralogical, organic and inorganic methods. New York: Springer, Berlin, Heidelberg, 993 pp.
  65. Peterson K.M., Billings W.D. 1982: Growth of alpine plants under controlled drought. Arctic and Alpine Research, 14: 189–194. https://doi.org/10.2307/1551151
  66. Praeg N., Pauli H., Illmer P. 2019. Microbial diversity in bulk and rhizosphere soil of Ranunculus glacialis along a high-alpine altitudinal gradient. Frontiers in microbiology, 10: 1429. https://doi.org/10.3389/fmicb.2019.01429
  67. Rezaei S.A., Gilkes R.J. 2005. The effects of landscape attributes and plant community on soil chemical properties in rangelands. Geoderma, 125(1–2): 167–176. https://doi.org/10.1016/j.geoderma.2004.07.010
  68. Sakai A., Larcher W. 1987. Frost survival of plants: Responses and adaptation to freezing stress. Berlin: Springer-Verlag, 321 pp. https://doi.org/10.1007/978-3-642-71745-1
  69. Scherrer D., Körner C. 2010. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology, 16(9): 2602–2613. https://doi.org/10.1111/j.1365-2486.2009.02122.x
  70. Schulte E.E., Hopkins B.G. 1996. Estimation of soil organic matter by weight loss-on-ignition. Analysis and interpretation, 1(46): 21–31. https://doi.org/10.2136/sssaspecpub46.c3
  71. Solomon J.C., Shulkina T.V., Schatz G.E. 2014. Red list of the endemic plants of the Caucasus: Armenia, Azerbaijan, Georgia, Iran, Russia, and Turkey. St. Louis, Missouri: Missouri Botanical Garden Press, 451 pp.
  72. Stuanes A.O., Ogner G., Opem M. 1984. Ammonium nitrate as extractant for soil exchangeable cations, exchangeable acidity and aluminum. Communications in Soil Science and Plant Analysis, 15(7): 773–778. https://doi.org/10.1080/00103628409367516
  73. Talakhadze G.R., Urushadze T.F., Kirvalidze R.I. 1985. Pochvovedenie, 1: 156–159.
  74. Tale K.S., Ingole S. 2015. A review on role of physico-chemical properties in soil quality. Chemical Science Review and Letters, 4(13): 57–66.
  75. Tan K.H. 1995. Soil sampling, preparation, and analysis. New York: CRC Press, 84 pp.
  76. IPNI. The International Plant Name Index. 2012–onward. Available at: http://www.ipni.org (Accessed 20 December 2017).
  77. Tudela-Isanta M., Ladouceur E., Wijayasinghe M., Pritchard H.W., Mondoni A. 2018. The seed germination niche limits the distribution of some plant species in calcareous or siliceous alpine bedrocks. Alpine Botany, 128(1): 83–95. https://doi.org/10.1007/s00035-018-0199-0
  78. Urushadze T. 1989. Mountain soils of the USSR. Moscow: Agropromizdat, 272 pp.
  79. Wisz M.S., Pottier J., Kissling W.D., Pellissier L., Lenoir J., Damgaard C.F., Dormann C.F., Forchhammer M.C., Grytnes J.A., Guisan A., Heikkinen R.K. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88(1): 15–30. https://doi.org/10.1111/j.1469-185X.2012.00235.x