Ukr. Bot. J. 2020, 77(6): 480–494 https://doi.org/10.15407/ukrbotj77.06.480Cell Biology and Molecular Biology
Protein bodies of the endoplasmic reticulum in Arabidopsis thaliana (Brassicaceae): origin, structural and biochemical features, functional significance
Romanchuk S.M.- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine
- 2 Tereschenkivska Str., Kyiv 01601, Ukraine
Abstract
History of the discovery, formation, structural and biochemical traits of the protein bodies, derivatives of the granular endoplasmic reticulum (GER) that are known as ER-bodies, are reviewed. The functions of ER-bodies in cell vital activity mainly in Arabidopsis thaliana are reported. The highly specific component of ER-bodies, β-glucosidase enzyme, is described and its protecting role for plants under effect of abiotic and biotic factors is characterized. Based on the analytical review of the literature, it is shown that ER-bodies and the transcription factor NAI2 are unique to species of the family Brassicaceae. The specificity of the system GER – ER-bodies for Brassicaceae and thus the fundamental and applied importance of future research of mechanisms of its functioning in A. thaliana and other Brassicaceae species are emphasized.
Keywords: Brassicaceae, Brassicales, β-glucosidase, cell defenses, ER-bodies, NAI2, PYK10
Full text: PDF (Ukr) 3.11M
References
- Adie B.A.T., Pérez-Pérez J., Pérez-Pérez M.M., Godoy M., Sánchez-Serrano J.-J., Schmelz E.A., Solano R. 2007. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. The Plant Cell, 19(5): 1665–1681. https://doi.org/10.1105/tpc.106.048041
- Angelos E., Ruberti C., Kim S.J., Brandizzi F. 2017. Maintaining the factory: the roles of the unfolded protein response in cellular homeostasis in plants. Plant Journal for Cell and Molecular Biology, 90(4): 671–682. https://doi.org/10.1111/tpj.13449
- Balla T., Kim Y.J., Alvarez-Prats A., Pemberton J. 2019. Lipid dynamics at contact sites between the endoplasmic reticulum and other organelles. Annual Review of Cell and Developmental Biology, 35: 85–109. https://doi.org/10.1146/annurev-cellbio-100818-125251
- Behnke H.-D., Eschlbeck G. 1978. Dilated cisternae in Capparales – an attempt towards the characterization of a specific endoplasmic reticulum. Protoplasma, 97: 351–363. https://doi.org/10.1007/BF01276292
- Bednarek P., Pislewska-Bednarek M., Svatos A., Schneider B., Doubsky J., Mansurova M., Humphry M., Consonni C., Panstruga R., Sanchez-Vallet A., Molina A., Schulze-Lefert P. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science, 323(5910): 101–106. https://doi.org/10.1126/science.1163732
- Bones A.M., Iversen T.-H. 1985. Myrosin cells and myrosinase. Israel Journal of Botany, 34(2): 351–376.
- Bones A.M., Evjen K., Iversen T.-H. 1989. Characterization and distribution of dilated cisternae of the endoplasmic reticulum in intact plants, protoplasts, and calli of Brassicaceae. Israel Journal of Plant Sciences, 38: 177–192.
- Bonnett H.T.J., Newcomb E.H. 1965. Polyribosomes and cisternal accumulations in root cells of radish. The Journal of Cell Biology, 27(2): 423–432. https://doi.org/10.1083/jcb.27.2.423
- Borek V., Elberson L.R., McCaffrey J.P., Morra M.J. 1997. Toxicity of rapeseed meal and methyl isothiocyanate to larvae of the black vine weevil (Coleoptera: Curculionidae). Journal of Economic Entomology, 90(1): 109–112. https://doi.org/10.1093/jee/90.1.109
- Brown P.D., Tokuhisa J.G., Reichelt M., Gershenzon J. 2003. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 62(3): 471–481. https://doi.org/10.1016/s0031-9422(02)00549-6
- Bulavin I.V. 2017. Peculiarities of root morphogenesis of Arabidopsis thaliana (L.) Heynh. in vitro culture under clinorotation: Cand. Sci. Diss. Abstract. Kyiv, Institute of Food Biotechnology and Genomics NAS of Ukraine, 20 pp.
- Buvat R. 1963. Electron microscopy of plant protoplasm. International Review of Cytology, 14: 41–155. https://doi.org/10.1016/S0074-7696(08)60021-2
- Denecke J., De Rycke R., Botterman J. 1992. Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. The EMBO Journal, 11(6): 2345–2355. https://doi.org/10.1002/j.1460-2075.1992.tb05294.x
- Dunkley T.P., Hester S., Shadforth I.P., Runions J., Weimar T., Hanton S.L., Griffin J.L., Bessant C., Brandizzi F., Hawes C., Watson R.B., Dupree P., Lilley K.S. 2006. Mapping the Arabidopsis organelle proteome. Proceedings of the National Academy of Sciences of the United States of America, 103(17): 6518–6523. https://doi.org/10.1073/pnas.0506958103
- Esau K. 1975. Dilated endoplasmic reticulum cisternae in differentiating xylem of minor veins of Mimosa pudica L. leaf. Annals of Botany, 39(2): 167–174. https://doi.org/10.1093/oxfordjournals.aob.a084926
- Esen A. 2003. β-Glucosidases. In: Handbook of food enzymology. Eds J.R. Whitaker, A.G.J. Voragen, D.W.S. Wong. New York: Marcel Dekker Inc., pp. 791–804.
- Falk K.L., Kästner J., Bodenhausen N., Schramm K., Paetz C., Vassão D.G., Reichelt M., Von Knorre D., Bergelson J., Erb M., Gershenzon J., Meldau S.2014. The role of glucosinolates and the jasmonic acid pathway in resistance of Arabidopsis thaliana against molluscan herbivores. Molecular Ecology, 23(5): 1188–1203. https://doi.org/10.1093/10.1111/mec.12610
- Faso C., Chen Y.N., Tamura K., Held M., Zemelis S., Marti L., Saravanan R., Hummel E., Kung L., Miller E., Hawes C., Brandizzi F. 2009. A missense mutation in the Arabidopsis COPII coat protein Sec24A induces the formation of clusters of the endoplasmic reticulum and Golgi apparatus. The Plant Cell, 21(11): 3655–3671. https://doi.org/10.1105/tpc.109.068262
- Fernandez D.E., Staehelin L.A. 1987. Does gibberellic acid induce the transfer of lipase from protein bodies to lipid bodies in barley eleurone cells? Plant Physiology, 85(2): 487–496. https://doi.org/10.1104/pp.85.2.487
- Fourcroy P., Siso-Terraza P., Sudre D., Saviron M., Reyt G., Gaymard F., Abadia A., Abadia J., Alvarez-Fernandez A., Briat J.F. 2014. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. The New Phytologist, 201(1): 155–167. https://doi.org/10.1111/nph.12471
- Frerigmann H., Piślewska-Bednarek M., Sánchez-Vallet A., Molina A., Glawischnig E., Gigolashvili T., Bednarek P. 2016. Regulation of pathogen-triggered tryptophan metabolism in Arabidopsis thaliana by MYB transcription factors and indole glucosinolate conversion products. Molecular Plant, 9(5): 682–695. https://doi.org/10.1016/j.molp.2016.01.006
- Fuchs R., Kopischke M., Klapprodt C., Hause G., Meyer A.J., Schwarzlander M., Fricker M.D., Lipka V. 2016. Immobilized subpopulations of leaf epidermal mitochondria mediate PEN2-dependent pathogen entry control in Arabidopsis. The Plant Cell, 28(1): 130–145. https://doi.org/10.1105/tpc.15.00887
- Gailhofer M., Thaler I., Rücker W. 1979. Dilated ER in callus cells and in cells from Armoracia plants cultivated in vitro. Protoplasma, 98: 263–274. https://doi.org/10.1007/BF01281443
- Gallardo K., Job C., Groot S.P.C., Puype M., Demol H., Vandekerckhove J., Job D. 2001. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiology, 126: 838–848. https://doi.org/10.1104/pp.126.2.835
- Geem K.R., Kim D.H., Lee D.W., Kwon Y., Lee J., Kim J.H., Hwang I. 2019. Jasmonic acid-inducible TSA1 facilitates ER body formation. Plant Journal for Cell and Molecular Biology, 97(2): 267–280. https://doi.org/10.1111/tpj.14112
- Gunning B.E.S. 1998. The identity of mystery organelles in Arabidopsis expressing GFP. Trends in Plant Science, 3(11): 417. https://doi.org/10.1016/S1360-1385(98)01336-3
- Hakenjos J.P., Bejai S., Ranftl Q., Behringer C., Vlot A.C., Absmanner B., Hammes U., Heinzlmeir S., Kuster B., Schwechheimer C. 2013. ML3 is a NEDD8- and ubiquitinmodified protein. Plant Physiology, 163(1): 135–149. https://doi.org/10.1104/pp.113.221341
- Halkier B.A., Gershenzon J. 2006. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology, 57: 303–333. https://doi.org/10.1146/annurev.arplant.57.032905.105228
- Han Y., Watanabe S., Shimada H., Sakamoto A. 2019. Dynamics of the leaf endoplasmic reticulum modulate β-glucosidase-mediated stress-activated ABA production from its glucosyl ester. Journal of Experimental Botany, 71(6): 2058–2071. https://doi.org/10.1093/jxb/erz528
- Hara-Nishimura I., Matsushima R., Shimada T., Nishimura M. 2004. Diversity and formation of endoplasmic reticulumderived compartments in plants. Are these compartments specific to plant cells? Plant Physiology, 136(3): 3435–3439. https://doi.org/10.1104/pp.104.053876
- Haseloff J., Siemering K.R., Prasher D.C., Hodge S. 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proceedings of the National Academy of Sciences of the United States of America, 94(6): 2122–2127. https://doi.org/10.1073/pnas.94.6.2122
- Hawes C.R., Juniper B.E., Horne J.C. 1981. Low and high voltage electron microscopy of mitosis and cytokinesis in maize roots. Planta, 152: 397–407. https://doi.org/10.1007/BF00385355
- Hawes C., Saint-Jore C., Martin B., Zheng H.-Q. 2001. ER confirmed as the location of mystery organelles in Arabidopsis plants expressing GFP. Trends in Plant Science, 6(6): 245–246. https://doi.org/10.1016/s1360-1385(01)01980-x
- Hayashi Y., Yamada K., Shimada T., Matsushima R., Nishizawa N.K., Nishimura M., Hara-Nishimura I. 2001. A proteinase-storing body that prepares for cell death or stresses in the epidermal cells of Arabidopsis. Plant and Cell Physiology, 42: 894–899. https://doi.org/10.1093/pcp/pce144
- Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. The Biochemical Journal, 280(2): 309–316. https://doi.org/10.1042/bj2800309
- Henrissat B., Davies J.G. 2000. Glycoside hydrolases and glycosyltransferases: families, modules, and implications for genomics. Plant Physiology, 124 (4): 1515–1519. https://doi.org/10.1104/pp.124.4.1515
- Herman E., Larkins B. 1999. Protein storage bodies and vacuoles. Plant Cell, 11: 601–614. https://doi.org/10.1105/tpc.11.4.601
- Herman E.M. 2008. Endoplasmic reticulum bodies: solving the insoluble. Current Opinion in Plant Biology, 11(6): 672–679. https://doi.org/10.1016/j.pbi.2008.08.004
- Hiruma K., Onozawa-Komori M., Takahashi F., Asakura M., Bednarek P., Okuno T., Schulze-Lefert P., Takano Y. 2010. Entry mode-dependent function of an indole glucosinolate pathway in Arabidopsis for nonhost resistance against anthracnose pathogens. The Plant Cell, 22(7): 2429–2443. https://doi.org/10.1105/tpc.110.074344
- Hoefert L.L. 1975. Tubules in dilated cisternae of endoplasmic reticulum of Thlaspi arvense (Cruciferae). American Journal of Botany, 62(7): 756–760. https://doi.org/10.1002/j.1537-2197.1975.tb14110.x
- Hopkins R.J., Van Dam N.M., Van Loon J.J.A. 2009. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annual Review of Entomology, 54: 57–83. https://doi.org/10.1146/annurev.ento.54.110807.090623
- Howell S.H. 2013. Endoplasmic reticulum stress responses in plants. Annual Review of Plant Biology, 64: 477–499. https://doi.org/10.1146/annurev-arplant-050312-120053
- Iversen T.-H., Flood P.R. 1969. Rod-shaped accumulations in cisternae of the endoplasmic reticulum in root cells of Lepidium sativum seedlings. Planta, 86: 295–298. https://doi.org/10.1007/BF00386462
- Iversen T.-H. 1970a. Cytochemical localization of myrosinase (β-thioglucosidase) in root tips of Sinapis alba. Protoplasma, 71: 451–466. https://doi.org/10.1007/BF01279688
- Iversen T.-H. 1970b. The morphology, occurrence, and distribution of dilated cisternae of the endoplasmic reticulum in tissues of plants of the Cruciferae. Protoplasma, 71(4): 467–477. https://doi.org/10.1007/BF01279689
- Jørgensen L.B., Behnke H.D., Mabry T.J. 1977. Proteinaccumulating cells and dilated cisternae of the endoplasmic reticulum in three glucosinolate containing genera: Armoracia, Capparis, Drypetes. Planta, 137: 215–224. https://doi.org/10.1007/BF00388153
- Jørgensen L.B. 1981. Myrosin cells and dilated cisternae of the endoplasmic reticulum in the order Capparales. Nordic Journal of Botany, 1: 433–445. https://doi.org/10.1111/j.1756-1051.1981.tb00709.x
- Kalinina Ia.M. 2007. Root tip cell growth and differentiation in Brassica rapa seedlings under microgravity and clinorotation conditions: Cand. Sci. Diss. Abstract. Kyiv, Institute of Cell Biology and Genetic Engineering NAS of Ukraine, 19 pp.
- Kamigaki A., Kondo M., Mano S., Hayashi M., Nishimura M. 2009. Suppression of peroxisome biogenesis factor 10 reduces cuticular wax accumulation by disrupting the ER network in Arabidopsis thaliana. Plant and Cell Physiology, 50(12): 2034–2046. https://doi.org/10.1093/pcp/pcp152
- Ketudat Cairns J.R., Esen A. β-Glucosidases. 2010. Cellular and Molecular Life Sciences, 67(20): 3389–3405. https://doi.org/10.1007/s00018-010-0399-2
- Kumamaru T., Uemura Y., Inoue Y., Takemoto Y., Siddiqui S.U., Ogawa M., Hara-Nishimura I., Satoh H. 2010. Vacuolar processing enzyme plays an essential role in the crystalline structure of glutelin in rice seed. Plant and Cell Physiology, 51(1): 38–46. https://doi.org/10.1093/pcp/pcp165
- Kumar T., Dweikat I., Sato S., Ge Z., Nersesian N., Chen H., Elthon T., Bean S., Ioerger B.P., Tilley M., Clemente T. 2012. Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench). Plant Biotechnology Journal, 10(5): 533–544. https://doi.org/10.1111/j.1467-7652.2012.00685.x
- Kumar M.N., Hsieh Y.F., Verslues P.E. 2015. At14a-Like1 participates in membrane-associated mechanisms promoting growth during drought in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 112(33): 10545–10550. https://doi.org/10.1073/pnas.1510140112
- Lai Y.S., Stefano G., Brandizzi F. 2014. ER stress signaling requires RHD3, a functionally conserved ER-shaping GTPase. Journal of Cell Science, 127: 3227–3232. https://doi.org/10.1242/jcs.147447
- Lazzeri L., Curto G., Leoni O., Dallavalle E. 2004. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the rootknot nematode Meloidogyne incognita (Kofoid et White) Chitw. Journal of Agricultural and Food Chemistry, 52(22): 6703–6707. https://doi.org/10.1021/jf030776u
- Lichtscheidl I.K., Weiss D.G. 1988. Visualization of submicroscopic structures in the cytoplasm of Allium ceps inner epidermal cells by video-enhanced contrast light microscopy. European Journal of Cell Biology, 46: 378–382. https://doi.org/10.1007/BF01322653
- Lipka V., Dittgen J., Bednarek P., Bhat R., Wiermer M., Stein M., Landtag J., Brandt W., Rosahl S., Scheel D., Llorente F., Molina A., Parker J., Somerville S., Schulze-Lefert P. 2005. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science, 310(5751): 1180–1183. https://doi.org/10.1126/science.1119409
- Mano S., Miwa T., Nishikawa S., Mimura T., Nishimura M. 2011. The Plant Organelles Database 2 (PODB2): an updated resource containing movie data of plant organelle dynamics. Plant and Cell Physiology, 52(2): 244–253. https://doi.org/10.1093/pcp/pcq184
- Matsushima R., Hayashi Y., Kondo M., Shimada T., Nishimura M., Hara-Nishimura I. 2002. An endoplasmic reticulumderived structure that is induced under stress conditions in Arabidopsis. Plant Physiology, 130: 1807–1814. https://doi.org/10.1104/pp.009464
- Matsushima R., Kondo M., Nishimura M., Hara-Nishimura I. 2003a. A novel ER-derived compartment, the ER body, selectively accumulates a beta-glucosidase with an ER-retention signal in Arabidopsis. The Plant Journal, 33(3): 493–502. https://doi.org/10.1046/j.1365-313X.2003.01636.x
- Matsushima R., Hayashi Y., Yamada K., Shimada T., Nishimura M., Hara-Nishimura I. 2003b. The ER body, a novel endoplasmic reticulum-derived structure in Arabidopsis. Plant and Cell Physiology, 44: 661–666. https://doi.org/10.1093/pcp/pcg089
- Matsushima R., Fukao Y., Nishimura M., Hara-Nishimura I. 2004. NAI1 gene encodes a basic-helix-loop-helix-type putative transcription factor that regulates the formation of an endoplasmic reticulum-derived structure, the ER body. The Plant Cell, 16(6): 1536–1549. https://doi.org/10.1105/tpc.021154
- Maison C., Horstmann H., Gleorgatos S.D. 1993. Regulated docking of nuclear membrane vesicles to vimentin filaments during mitosis-1. The Journal of Cell Biology, 123: 1491–1505. https://doi.org/10.1083/jcb.123.6.1491
- McConn M., Creelman R.A., Bell E., Mullet J.E., Browse J. 1997. Jasmonate is essential for insect defense in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 94(10): 5473–5477. https://doi.org/10.1073/pnas.94.10.5473
- McFarlane H.E., Lee E.K., Van Bezouwen L.S., Ross B., Rosado A., Samuels A.L. 2017. Multiscale structural analysis of plant ER-PM contact sites. Plant and Cell Physiology, 58: 478–484. https://doi.org/10.1093/pcp/pcw224
- Mitsuhashi N., Shimada T., Mano S., Nishimura M., Hara-Nishimura I. 2000. Characterization of organelles in the vacuolar-storting pathway by visualization with GFP in Tobacco BY-2 cells. Plant and Cell Physiology, 41(9): 993–1001. https://doi.org/10.1093/pcp/pcd040
- Moussaieff A., Rogachev I., Brodsky L., Malitsky S., Toal T.W., Belcher H., Yativ M., Brady S.M., Benfey P.N., Aharoni A. 2013. High-resolution metabolic mapping of cell types in plant roots. Proceedings of the National Academy of Sciences of the United States of America, 110(13): E1232–E1241. https://doi.org/10.1073/pnas.1302019110
- Nagamine A., Matsusaka H., Ushijima T., Kawagoe Y., Ogawa M., Okita T.W., Kumamaru T. 2011. A role for the cysteine-rich 10 kDa prolamin in protein body I formation in rice. Plant and Cell Physiology, 52(6): 1003–1016. https://doi.org/10.1093/pcp/pcr053
- Nagano A.J., Matsushima R., Hara-Nishimura I. 2005. Activation of an ER body-localized β-glucosidase via a cytosolic binding partner in damaged tissues of Arabidopsis thaliana. Plant and Cell Physiology. 46(7): 1140–1148. https://doi.org/10.1093/pcp/pci126
- Nagano A.J., Fukao Y., Fujiwara M., Nishimura M., Hara-Nishimura I. 2008. Antagonistic jacalin-related lectins regulate the size of ER body-type β-glucosidase complexes in Arabidopsis thaliana. Plant and Cell Physiology, 49: 969–980. https://doi.org/10.1093/pcp/pcn075
- Nagano A.J., Maekawa A., Nakano R.T., Miyahara M., Higaki T., Kutsuna N., Hasezawa S., Hara-Nishimura I. 2009. Quantitative analysis of ER body morphology in an Arabidopsis mutant. Plant and Cell Physiology, 50(12): 2015–2022. https://doi.org/10.1093/pcp/pcp157
- Nakano R.T., Matsushima R., Ueda H., Tamura K., Shimada T., Li, L., Hayashi Y., Kondo M., Nishimura M., Hara-Nishimura I. 2009. GNOM-LIKE1/ERMO1 and SEC24a/ERMO2 are required for maintenance of endoplasmic reticulum morphology in Arabidopsis thaliana. The Plant Cell, 21(11): 3672–3685. https://doi.org/10.1105/tpc.109.068270
- Nakano R.T., Matsushima R., Nagano A.J., Fukao Y., Fujiwara M., Kondo M., Nishimura M., Hara-Nishimura I. 2012. ERMO3/MVP1/GOLD36 is involved in a cell typespecific mechanism for maintaining er morphology in Arabidopsis thaliana. Public Library of Science one, 7(11): e49103. https://doi.org/10.1371/journal.pone.0049103
- Nakano R.T., Yamada K., Bednarek P., Nishimura M., Hara-Nishimura I. 2014. ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. Frontiers in Plant Science, 5(73). Available at: https://www.frontiersin.org/articles/10.3389/fpls.2014.00073/full (Accessed 10 March 2014). https://doi.org/10.3389/fpls.2014.00073
- Nakano R.T., Pislewska-Bednarek M., Yamada K., Edger P.P., Miyahara M., Kondo M., Böttcher C., Mori M., Nishimura M., Schulze-Lefert P., Hara-Nishimura I., Bednarek P. 2017. PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in Arabidopsis thaliana. Plant Journal for Cell and Molecular Biology, 89(2): 204–220. https://doi.org/10.1111/tpj.13377
- Nakazaki A., Yamada K., Kunieda T., Sugiyama R., Hirai M.Y., Tamura K., Hara-Nishimura I., Shimada T. 2019. Leaf endoplasmic reticulum bodies identified in Arabidopsis rosette leaves are involved in defense against herbivory. Plant Physiology, 179(4): 1515–1524. https://doi.org/10.1104/pp.18.00984
- Nelson B.K., Cai X., Nebenfuhr A. 2004. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant Journal for Cell and Molecular Biology, 51(6): 1126–1136. https://doi.org/10.1111/j.1365-313X.2007.03212.x
- Nitz I., Berkefeld H., Puzio P.S., Grundler F.M.W. 2001. PYK10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Science, 161(2): 337–346. https://doi.org/10.1016/S0168-9452(01)00412-5
- Ogasawara K., Yamada K., Christeller J.T., Kondo M., Hatsugai N., Hara Nishimura I., Nishimura M. 2009. Constitutive and inducible ER bodies of Arabidopsis thaliana accumulate distinct β-glucosidases. Plant and Cell Physiology, 50(3): 480–488. https://doi.org/10.1093/pcp/pcp007
- Okamoto T., Minamikawa T. 1998. A vacuolar cystaine endopeptidase (SH-EP) that digests seed storage globulin: characterization, regulation of gene expression, and post-translational processing. Journal of Plant Physiology, 152(6): 675–682. https://doi.org/10.1016/S0176-1617(98)80029-1
- Okamoto T., Shimada T., Hara-Nishimura I., Nishimura M., Minamikawa T. 2003. C-terminal KDEL sequence of a KDELtailed cysteine proteinase (sulfhydrylendopeptidase) is involved in formation of KDEL vesicle and in efficient vacuolar transport of sulfhydrylendopeptidase. Plant Physiology, 132(4): 1892–1900. https://doi.org/10.1104/pp.103.021147
- Okita T.W., Rogers J.C. 1996. Compartmentation of proteins in the endomembrane system of plant cells. Annual Review of Plant Physiology and Plant Molecular Biology, 47: 327–350. https://doi.org/10.1146/annurev.arplant.47.1.327
- Pagny S., Lerouge P., Faye L., Gomord V. 1999. Signals and mechanisms for protein retention in the endoplasmic reticulum. Journal of Experimental Botany, 50(331): 157–158. https://doi.org/10.1093/jxb/50.331.157
- Porter K.R., Claude A., Fullam E.F. 1945. A study of tissue culture cells by electron microscopy. Journal of Experimental Medicine, 81(3): 233–246. https://doi.org/10.1084/jem.81.3.233
- Porter K.R. 1953. Observations on a submicroscopic basophilic component of cytoplasm. Journal of Experimental Medicine, 97(5): 727–750. https://doi.org/10.1084/jem.97.5.727
- Pozo M.G., Van Der Ent S., Van Loon L.C., Pieterse C.M.J. 2008. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteriainduced systemic resistance in Arabidopsis thaliana. The New Phytologist, 180: 511–523. https://doi.org/10.1111/j.1469-8137.2008.02578.x
- Quander H., Schnepf E. 1986. Endoplasmic reticulum and cytoplasmic streaming: Fluorescence microscopical observations in adrenal epidermis cells of onion bulb scales. Protoplasma, 131: 250–252. https://doi.org/10.1007/BF01282989
- Quander H. 1990. Formation and disintegration of cisternae of the endoplasmic reticulum visualized in live cells by conventional fluorescence and confocal laser scanning microscopy: Role of calcium and the cytoskeleton. Protoplasma, 151: 167–170. https://doi.org/10.1007/BF01322626
- Reymond P., Weber H., Damond M., Farmer E.E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. The Plant Cell, 12: 707–720. https://doi.org/10.1105/tpc.12.5.707
- Ridge R.W., Uozumi Y., Plazinski J., Hurley U., Williamson R.E. 1999. Developmental transitions and dynamics of the cortical ER of Arabidopsis cells seen with green fluorescent protein. Plant and Cell Physiology, 40: 1253–1261. https://doi.org/10.1093/oxfordjournals.pcp.a029513
- Romanchuk S.M. 2010. Ultrastructure of the statocytes and cells of the distal elongation zone of Arabidopsis thaliana under the conditions of clinorotation. Cytology and Genetics, 44(6): 329–333. https://doi.org/10.3103/S0095452710060010
- Romanchuk S.M., Kordyum E.L. 2013. The role of ERbodies in Brassicaceae resistance under clinorotation. "Life in Space for Life on Earth", Proceedings of the conference held at Aberdeen, UK, 2013. ESA-SP 706. Id. 44. Available at: http://articles.adsabs.harvard.edu/pdf/2013ESASP.706E..44R (Accessed January 2013).
- Romanchuk S.N., Kordyum E.L. 2014. ER bodies in Arabidopsis thaliana seedlings are sensitive to simulated microgravity and ionizing radiation. Newsletter of the European Low Gravity Research Association, 9: 10–11.
- Romanchuk S. 2019. Bulletin of Taras Shevchenko National University of Kyiv. Series: Biology, 1(77): 61–67.
- Romanchuk S.M. 2020. Expression of the β-glucosidase gene and ultrastructure of endoplasmic reticulum bodies in root cells of Arabidopsis thaliana under the influence of clinorotation and ionizing radiation: Cand. Sci. Diss. Kyiv, Institute of Food Biotechnology and Genomics NAS of Ukraine, 180 pp. (manuscript).
- Rosenberg N., Shimoni Y., Altschuler Y., Levanony H., Volokita'M., Calili C. 1993. Wheat (Triticum aestivum L.) y-gliadin accumulates in dense protein bodies within the endoplasmic reticulum of yeast'. Plant physiology, 102(1):61–69. https://doi.org/10.1104/pp.102.1.61
- Satoh-Cruz M., Crofts A.J., Takemoto-Kuno Y., Sugino A., Washida H., Crofts N., Okita T.W., Ogawa M., Satoh H., Kumamaru T. 2010. Protein disulfide isomerase like 1-1 participates in the maturation of proglutelin within the endoplasmic reticulum in rice endosperm. Plant and Cell Physiology, 51(9): 1581–1593. https://doi.org/10.1093/pcp/pcq098
- Schmid M., Simpson D., Kalousek F., Gietl C. 1998. A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta, 206(3): 466–475. https://doi.org/10.1007/s004250050423
- Schmid M., Simpson D., Gietl C. 1999. Programmed cell death in castor bean endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes. Proceedings of the National Academy of Sciences of the United States of America, 96(24): 14159–14164. https://doi.org/10.1073/pnas.96.24.14159
- Schmid N.B., Giehl R.F., Doll S., Mock H.P., Strehmel N., Scheel D., Kong X., Hider R.C., Von Wiren N. 2014. Feruloyl-CoA 6'-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiology, 164(1): 160–172. https://doi.org/10.1104/pp.113.228544
- Senatore A., Trobacher C.P., Greenwood J.S. 2009. Ricinosomes predict programmed cell death leading to anther dehiscence in tomato. Plant Physiology, 149(2): 775–790. https://doi.org/10.1104/pp.108.132720
- Sherameti I., Venus Y., Drzewiecki C., Tripathi S., Dan V.M., Nitz I., Varma A., Grundler F.M., Oelmüller R. 2008. PYK10, a β-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant Journal for Cell and Molecular Biology, 54(3): 428–439. https://doi.org/10.1111/j.1365-313X.2008.03424.x
- Staehelin L.A., Chapman R.L. 1987. Secretion and membrane recycling in plant cells: novel intermediary structures visualized in ultrarapidly frozen sycamore and carrot suspension-culture cells. Planta, 171(1): 43–57. https://doi.org/10.1007/BF00395066
- Staehelin L.A. 1997. The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant Journal for Cell and Molecular Biology, 11(6): 1151–1165. https://doi.org/10.1046/j.1365-313x.1997.11061151.x
- Stefano G., Brandizzi F. 2018. Advances in plant ER architecture and dynamics. Plant and Cell Physiology, 176: 178–186. https://doi.org/10.1104/pp.17.01261
- Stornaiuolo M., Lotti L.V., Borgese N., Borgese N., Torrisi M.-R., Mottola G., Martire G., Bonatti S. 2003. KDEL and KKXX retrieval signals appended to the same reporter protein determine different trafficking between endoplasmic reticulum, intermediate compartment, and Golgi complex. Molecular Biology of the Cell, 14(3): 889–902. https://doi.org/10.1091/mbc.E02-08-0468
- Sun J.Y., Sønderby I.E., Halkier B.A., Jander G., Be Vos M. 2009. Non-volatile intact indole glucosinolates are host recognition cues for ovipositing Plutella xylostella. Journal of Chemical Ecology, 35(12): 1427–1436. https://doi.org/10.1007/s10886-009-9723-4
- Takahashi S., Yanai H., Nakamaru Y., Uchida A., Nakayama K., Satoh H. 2012. Molecular cloning, characterization and analysis of the intracellular localization of a water-soluble Chl-binding protein from Brussels sprouts (Brassica oleracea var. gemmifera). Plant and Cell Physiology, 53(5): 879–891. https://doi.org/10.1093/pcp/pcs031
- Tosi P., Gritsch C.S, He J., Shewry P.R. 2011. Distribution of gluten proteins in bread wheat (Triticum aestivum) grain. Annals of Botany, 108(1): 23–35. https://doi.org/10.1093/aob/mcr098
- Toyooka K., Okamoto T., Minamikawa T. 2000. Mass transport of proform of a KDEL-tailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulumderived vesicle is involved in protein mobilization in germinating seeds. Journal of Cell Biology, 148: 453–464. https://doi.org/10.1083/jcb.148.3.453
- Thangstad O.P., Iversen T.-H., Slupphaug G., Bones A. 1990. Immunocytochemical localization of myrosinase in Brassica napus L. Planta, 180: 245–248. https://doi.org/10.1007/BF00194003
- Thangstad O.P., Evjen K., Bones A. 1991. Immunogold-EM localization of myrosinase in Brassicaceae. Protoplasma, 161: 85–93. https://doi.org/10.1007/BF01322721
- Voeltz G.K., Prinz W.A., Shibata Y., Rist J.M., Rapoport T.A. 2006. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell, 124: 573–586. https://doi.org/10.1016/j.cell.2005.11.047
- Wang P., Hawkins T.J., Richardson C., Cummins I., Deeks M.J., Sparkes I., Hawes C., Hussey P.J. 2014. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Current Biology, 24(12): 1397–1405. https://doi.org/10.1016/j.cub.2014.05.003
- Wang J.Z., Li B., Xiao Y., Ni Y., Ke H., Yang P., De Souza A., Bjornson M., He X., Shen Z., Balcke G.U., Briggs S.P., Tissier A., Kliebenstein D.J., Dehesh K. 2017. Initiation of ER body formation and indole glucosinolate metabolism by the plastidial retrograde signaling metabolite. Molecular Plant, 10(11): 1400–1416. https://doi.org/10.1016/j.molp.2017.09.012
- Wang Z., Li X., Liu N., Peng Q., Wang Y., Fan B., Zhu C., Chen Z. 2019. A family of NAI2-interacting proteins in the biogenesis of the ER body and related structures. Plant Physiology, 180(1): 212–227 https://doi.org/10.1104/pp.18.01500
- Wasternack C., Parthier B. 1997. Jasmonate-signalled plant gene expression. Trends in Plant Science, 2(8): 302–307. https://doi.org/10.1016/S1360-1385(97)89952-9
- Yamada K., Nagano A.J., Nishina M., Hara-Nishimura I., Nishimura M. 2008. NAI2 is an endoplasmic reticulum body component that enables ER body formation in Arabidopsis thaliana. The Plant Cell, 20: 2529–2540. https://doi.org/10.1105/tpc.108.059345
- Yamada K., Nagano A.J, Ogasawara K., Hara-Nishimura I., Nishimura M. 2009. The ER body, a new organelle in Arabidopsis thaliana, requires NAI2 for its formation and accumulates specific β-glucosidases. Plant Signaling and Behavior, 4(9): 849–852. https://doi.org/10.4161/psb.4.9.9377
- Yamada K., Hara-Nishimura I., Nishimura M. 2011. Unique defense strategy by the endoplasmic reticulum body in plants. Plant and Cell Physiology, 52(12): 2039–2049. https://doi.org/10.1093/pcp/pcr156
- Yamada K., Nagano A.J., Nishina M., Hara-Nishimura I., Nishimura M. 2013. Identification of two novel endoplasmic reticulum body-specific integral membrane proteins. Plant Physiology, 161: 108–120. https://doi.org/10.1104/pp.112.207654
- Yamada K., Goto-Yamada S., Nakazaki A., Kunieda T., Kuwata K., Nagano A.J., Nishimura M., Hara-Nishimura I. 2020. Endoplasmic reticulum-derived bodies enable a single-cell chemical defense in Brassicaceae plants. Communications Biology, 3(21). https://doi.org/10.1038/s42003-019-0739-1
- Yamamoto A., Yoshii M., Murase S., Fujita M., Kurata N., Hobo T., Kagaya Y., Takeda S., Hattori T. 2014. Cell-by-cell developmental transition from embryo to post-germination phase revealed by heterochronic gene expression and ER body formation in Arabidopsis leafy cotyledon mutants. Plant and Cell Physiology, 55(12): 2112–2125. http://doi.org/10.1093/pcp/pcu139
- Yasuda H., Hirose S., Kawakatsu T., Wakasa Y., Takaiwa F. 2009. Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice. Plant and Cell Physiology, 50(8): 1532–1543. http://doi.org/10.1093/pcp/pcp098
- Xu Z., Escamilla-Trevino L., Zeng L., Lalgondar M., Bevan D., Winkel B., Mohamed A., Cheng C.-L., Shih M.-C., Poulton J., Esen A. 2004. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Molecular Biology, 55: 343–367. https://doi.org/10.1007/s11103-004-0790-1
- Zhou K., Slavin M., Lutterodt H., Whent M., Eskin N.A.M., Yu L. 2013. Cereals and legumes. In: Biochemistry of Foods (Third Edition). Eds N.A.M. Eskin, F. Shahidi. San Diego, CA: Elseveir Inc., pp. 4–48. https://doi.org/10.1016/B978-0-08-091809-9.00001-7