ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 4 of 6
Up
Ukr. Bot. J. 2020, 77(5): 378–385
https://doi.org/10.15407/ukrbotj77.05.378
Biotechnology, Physiology and Biochemistry

Cellulases of basidiomycetes for the development of cellulose bioconversion technologies

Boiko S.M.
Abstract

Basidiomycetes cultures were screened for the ability to actively express the cellulases complex. Nutrient media with various forms of sugars were used. From 22 cultures of macromycetes (14 species), a group of six cultures with high level activities of extracellular (Il-11 I. lacteus – 70 IU, Fvv F. velutipes – 78 IU, Pe-1 P. eryngii – 87 IU, Ps-1 L. sulphureus – 83 IU, Mg M. giganteus – 74 IU) and intracellular (Sc-51 S. commune – 102 IU) cellulase complex was selected. Cultures of the species exhibit notable differences in the expression of enzymes, which indicates a significant influence of genetic factors on the process of producer selection. Endo-1,4-β-D-glucanases isozymes for most fungi had a molecular weight of 55 kDa and above, except for S. commune, which had more variability of conformation and weight 12–55 kDa. The culture of Il-11 I. lacteus on media with Avicel and filter paper had the highest activity, its endo- and exo-1,4-β-D-glucanases activities ranged 37–39 IU/mL and 18–20 IU/ mL, respectively. The culture of S. commune Sc-51 is able to accumulate a significant amount of intracellular cellulases, but the production of culture fluid with high viscosity complicates technological manipulations and increases processing time. The obtained data allowed us to isolate an Il-11 I. lacteus culture with stable expression and high activity of the cellulases complex at different carbon sources.

Keywords: Basidiomycota, cellulases, endo-1, 4-β-D-glucanase, exo-1, 4-β-D-glucanase, expression

Full text: PDF (Ukr) 2.14M

References
  1. Boiko S.M. 2018. Pool of endoglucanase genes in Schizophyllum commune Fr.:Fr. (Basidiomycetes) on the territory of Ukraine. Acta Biologica Szegediensis, 62(1): 53–59. https://doi.org/10.14232/abs.2018.1.53-59
  2. Eveleigh D.E., Mandels M., Andreotti R., Roche C. 2009. Measurement of saccharifying cellulase. Biotechnology for Biofuels, 2: 21. https://doi.org/10.1186/1754-6834-2-21
  3. Floudas D., Binder M., Riley R., Barry K., Blanchette R.A., Henrissat B., Martinez A.T., Otillar R., Spatafora J.W., Yadav J.S., Aerts A., Benoit I., Boyd A., Carlson A., Copeland A., Coutinho P.M., de Vries R.P., Ferreira P., Findley K., Foster B., Gaskell J., Glotzer D., Gyrecki P., Heitman J., Hesse C., Hori C., Igarashi K., Jurgens J. A., Kallen N., Kersten P., Kohler A., Kües U., Kumar T.K.A., Kuo A., LaButti K., Larrondo L.F., Lindquist E., Ling A., Lombard V., Lucas S., Lundell T., Martin R., McLaughlin D.J., Morgenstern I., Morin E., Murat C., Nagy L.G., Nolan M., Ohm R.A., Patyshakuliyeva A., Rokas A., Ruiz-Duecas F.J., Sabat G., Salamov A., Samejima M., Schmutz J., Slot J.C., St. John F., Stenlid J., Sun H., Sun S., Syed K., Tsang A., Wiebenga A., Young D., Pisabarro A., Eastwood D.C., Martin F., Cullen D., Grigoriev I.V., Hibbett D.S. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science, 336(6089): 1715–1719. https://doi.org/10.1126/science.1221748
  4. Gaurav N., Sivasankari S., Kiran G.S., Ninawe A., Selvin J. 2017. Utilization of bioresources for sustainable biofuels: A review. Renewable and Sustainable Energy Reviews, 73: 205–214. https://doi.org/10.1016/j.rser.2017.01.070
  5. Ghose T.K. 1987. Measurement of cellulase activity. Pure and Applied Chemistry, 59(2): 257–268. https://doi.org/10.1351/pac198759020257
  6. Ha S.J., Galazka J.M., Kim S.R., Choi J.H., Yang X., Seo J.H., Glass N.L., Cate J.H.D., Jin Y.S. 2011. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences of the United States of America, 108(2): 504–509. https://doi.org/10.1073/pnas.1010456108
  7. Hahn-Hagerdal B., Galbe M., Gorwa-Grauslund M.F., Liden G., Zacchi G. 2006. Bio-ethanol – the fuel of tomorrow from the residues of today. Trends in Biotechnology. 24(12): 549–556. https://doi.org/10.1016/j.tibtech.2006.10.004
  8. Himmel M.E., Ding S.Y., Johnson D.K., Adney W.S., Nimlos M.R., Brady J.W, Foust T.D. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813): 804–807. https://doi.org/10.1126/science.1137016
  9. Jorgensen H., Kristensen J.B., Felby C. 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioproducts and Biorefining, 1: 119–134. https://doi.org/10.1002/bbb.4
  10. Juhasz T., Szengyel Z., Szijártó N., Réczey K. 2004. Effect of pH on cellulase production of Trichoderma reesei RUT C30. Applied Biochemistry and Biotechnology, 113-116(2): 201–211. https://doi.org/10.1385/abab:113:1-3:201
  11. Kang S.W., Park Y.S., Lee J.S., Hong S.I., Kim S.W. 2004. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technology, 91(2): 153–156. https://doi.org/10.1016/s0960-8524(03)00172-x
  12. Padhiar A., Albert S., Nagadesi P.K., Arya A. 2010. Lignin degradation by Flavodon flavus (Klotzsch.) Ryv. and Schizophyllum commune Fr. on Mangifera indica and Syzygium cumini woods. Journal of WoodChemistry and Technology, 30(2): 129–139. https://doi.org/10.1080/02773810903207770
  13. Sharma D., Sud A., Bansal S., Mahajan R., Sharma B.M., Chauhan R.S., Goel G. 2018. Endocellulase production by Cotylidia pannosa and its application in saccharification of wheat bran to bioethanol. BioEnergy Research, 11(2): 219–227. https://doi.org/10.1007/s12155-017-9890-z
  14. Singhania R.R., Sukumaran R.K., Patel A.K., Larroche C., Pandey A. 2010. Advancement and comparative profies in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology, 46(7): 541–549. https://doi.org/10.1016/j.enzmictec.2010.03.010
  15. Somogyi M. 1952. Notes on sugar determination. Journal of Biological Chemistry, 70(6): 17–23.
  16. Stoscheck C.M. 1990. Quantitation of Protein. Methods in Enzymology, 182: 50–69. https://doi.org/10.1016/0076-6879(90)82008-P
  17. Wyman C.E. 1999. Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annual Review of Energy and the Environment, 24: 189–226. https://doi.org/10.1146/annurev.energy.24.1.189
  18. Xiao L.P., Shi Z.J., Bai Y.Y., Wang W., Zhang X.M., Sun R.C. 2013. Biodegradation of lignocellulose by whiterot fungi: structural characterization of water-soluble hemicelluloses. BioEnergy Research. 6: 1154–1164. https://doi.org/10.1007/s12155-013-9302-y
  19. Zhu N., Liu J., Yang J. Lin Y., Yang Y., Ji L., Li M., Yuan H. 2016. Comparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulosedegrading enzyme system. Biotechnology for Biofuels, 9: 42. https://doi.org/10.1186/s13068-016-0461-x