ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 7 of 7
Up
Ukr. Bot. J. 2019, 76(3): 260–269
https://doi.org/10.15407/ukrbotj76.03.260
Plant Physiology, Biochemistry, Cell and Molecular Biology

Hormonal complex of gametophytes of Dryopteris filix-mas (Dryopteridaceae) in in vitro culture

Kosakivska I.V., Romanenko K.O., Voytenko L.V., Vasyuk V.A., Shcherbatiuk M.M., Babenko L.M.
Abstract

The content of endogenous phytohormones indolyl-3-acetic (IAA), gibberellic (GA3), abscisic (ABA), salicylic (SA) acids, cytokinins – t-zeatin (t-Z), t-zeatin-O-glucoside (t-ZG), t-zeatin riboside (t-ZR), isopentenyl adenin (iP) and isopentenyl adenosine (iPA) was determined using the high-performance liquid chromatography-mass spectrometry system Agilent 1200 in Dryopteris filix-mas gametophytes at different stages of its morphogenesis in culture in vitro. It was shown that GA3 and t-Z dominated in the thallus of 60-day gametophytes at the stage of spatulate prothallium development, which was marked by an intensive growth of the prothallium plate due to the division and extension of apical cells. The content of GA3 reached 229.9 ± 11.5 ng/g of fresh weight (f. w.) and t-Z was 56.1 ± 2.8 ng/g f. w. IAA dominated in the thallus of 90-day gametophytes, which were characterized by an active development of the archegonium cushion consisting of several layers of cells necessary for the further nutrition of the sporophyte, and formation of the archegonium and antheridium. At the final stage of morphogenesis, in the thallus of 120-day gametophytes, on the surface of which sporophytes have not yet appeared, active t-Z dominated, whereas in the thallus with sporophytes, the content of IAA reached the maximum value (395.5 ± 19.8 ng/g f. w.) that may indicate a direct involvement of the hormone in the regulation of the sporophyte growth and development. At this stage of morphogenesis, the accumulation of t-ZR and the emergence of ABA were observed. The maximum content of SA (287.7 ± 14.4 ng/g f. w.) occurred at the first stage of development. Subsequently, there was a significant reduction in the hormone level. In the thallus of gametophytes, on the surface of which the sporophyte was formed, the level of SA increased. The peculiarities of quantitative and qualitative changes have shown that physiological effects of the analyzed phytohormones is directed towards regulation the morphogenesis of Dryopteris filix-mas gametophyte.

Keywords: gametophytes, Dryopteris filix-mas, in vitro culture, morphogenesis, phytohormones

Full text: PDF (Ukr) 3.00M

References
  1. Achard P., Genschik P. 2009. Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. Journal of Experimental Botany, 60(4): 1085–1092. https://doi.org/10.1093/jxb/ern301
  2. Albaum H.G. 1938. Inhibitions due to growth hormones in fern prothallium. American Journal of Botany, 938, 25: 124–133. https://doi.org/10.1002/j.1537-2197.1938.tb09196.x
  3. Atallah N.M., Banks J.A. 2015. Reproduction and the pheromonal regulation of sex type in fern gametophytes. Frontiers in Plant Science, 6: 100–107. https://doi.org/10.3389/fpls.2015.00100
  4. Babenko L.M., Romanenko K.O., Shcherbatiuk M.M., Vasheka O.V., Romanenko P.O., Negretsky V.A., Kosakivska I.V. 2017. Reports of the National Academy of Sciences of Ukraine, (10): 101–107. https://doi.org/10.15407/dopovidi2017.10.101
  5. Babenko L.M., Romanenko K.O., Shcherbatiuk M.M., Vasheka O.V., Romanenko P.O., Negretsky V.A., Kosakivska I.V. 2008. Effects of exogenous phytohormones on spore germination and morphogenesis of Polystichum aculeatum (L.) Roth gametophyte in vitro culture. Cytology and Genetics, 52 (2): 117–126. https://doi.org/10.3103/S0095452718020032
  6. Banks J.A. 1999. Gametophyte development in ferns. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 163–186. https://doi.org/10.1146/annurev.arplant.50.1.163
  7. Bürcky K. 1977. Antheridiogene in Anemia phyllitidis L. Sw. (Schizaeaceae) 1. Zeitverlauf der Antheridiogensynthese Citation Data. Zeitschrift für Pflanzenphysiologie, 84(2): 167–171. https://doi.org/10.1016/S0044-328X(77)80190-6
  8. Cheng C.Y., Schraudolf H. 1974. Nachweis von abscisinsäure in sporen und jungen Prothallien von Anemia phyllitidis (L.) Sw. Zeitschrift fűr Pflanzenphysiologie, 71: 366–369. https://doi.org/10.1016/S0044-328X(74)80043-7
  9. Cline M.G., Oh C. 2006. A reappraisal of the role of abscisic acid and its interaction with auxin in apical dominance. Annals of Botany, 98(4): 891–897. https://doi.org/10.1093/aob/mcl173
  10. De Vries S., De Vries J., Teschke H., von Dahlen J.K., Rose L.E., Gould S.B. 2018. Jasmonic and salicylic acid response in the fern Azolla filiculoides and its cyanobiont. Plant, Cell & Environment, 41(11): 2530–2548. https://doi.org/10.1111/pce.13131
  11. Dempsey D.A., Klessig D.F. 2017. How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biology, 15: 23–34. https://doi.org/10.1186/s12915-017-0364-8
  12. Derzhavina N.M., Pokrovskaya Z.M. 2011. Turczaninowia, 14(3): 131–144.
  13. Dobrev P.I., Vankova R. 2012. Quantification of abscisic acid, cytokinin, and auxin content in saltstressed plant tissues. Plant Salt Tolerance. Methods in Molecular Biology (Methods and Protocols), 913: 251–261. https://doi.org/10.1007/978-1-61779-986-0_17
  14. Enders T.A., Strader, L.C. 2015. Auxin activity: past, present, and future. American Journal of Botany, 102: 180–196. https://doi.org/10.3732/ajb.1400285
  15. Fonseca S., Rosado A., Vaughan-Hirsch J., Bishopp A., Chini A. 2014. Molecular locks and keys: the role of small molecules in phytohormone research. Frontiers in Plant Science, 5: 1–16. https://doi.org/10.3389/fpls.2014.00709
  16. Frébort I., Kowalska M., Hluska T., Frébortová J., Galuszka P. 2011. Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany, 62(8): 2431–2452. https://doi.org/10.1093/jxb/err004
  17. Fukui K., Hayashi K. 2018. Manipulation and Sensing of Auxin Metabolism, Transport and Signaling. Plant and Cell Physiology, 59(8): 1500–1510. https://doi.org/10.1093/pcp/pcy076
  18. Gantait S., Sinniah U.R., Ali M.N., Sahu N.C. 2015. Gibberellins – a multifaceted hormone in plant growth regulatory network. Current Protein & Peptide Science, 16(5): 406–412. https://doi.org/10.2174/1389203716666150330125439
  19. Greer G.K., Dietrich M.A., Stewart S., Devol J., Rebert A. 2009. Morphological functions of gibberellins in leptosporangiate fern gametophytes: insights into the evolution of form and gender expression. Botanical Journal of the Linnean Society, 159: 599–615. https://doi.org/10.1007/s11738-011-0794-9
  20. Haufler C.H., Pryer K.M, Schuettpelz E., Sessa E.B., Farrar D.R., Moran R., Schneller J.J., Watkins Jr.J.E., Windham M.D. 2016. Sex and the single gametophyte: Revising the homosporous vascular plant life cycle in light of contemporary research. BioScience, 66(11): 928–937. https://doi.org/10.1093/biosci/biw108
  21. Hickok L.G. 1983. Abscisic acid blocks antheridiogeninduced antheridium formation in gametophytes of the fern Ceratopteris, Canadian Journal of Botany, 61: 888–892. https://doi.org/10.1139/b83-098
  22. Hickok L.G. 1985. Abscisic acid resistant mutants in the fern Ceratopteris: characterization and genetic analysis. Canadian Journal of Botany, 63: 1582–1585. https://doi.org/10.1139/b85-220
  23. Hirano K., Nakajima N., Asano K., Nishiyama T., Sakakibara H., Kojima M., Katoh E., Xiang H., Tanahashi T., Hasaebe M., Banks J., Ashikari M., Kiatano H., Ueguchi-Takana M., Matsuoka M. 2009. The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella moellendorfii but not in the bryophyte Physcomitrella patens. Plant Cell, 19: 3058–3079. https://doi.org/10.1007/s11738-011-0794-9
  24. Hwang I., Sheen J., Muller B. 2012. Cytokinin signaling networks. Annual Review of Plant Biology, 63: 353–380. https://doi.org/10.1146/annurev-arplant-042811-105503
  25. Karpets Yu.V., Kolupaev Yu.E., Kosakivska I.V. 2016. Plant physiology and genetics, 48(2): 158–166.
  26. Kieber J.J., Schaller G.E. 2014. Cytokinins. Arabidopsis Book, 12: e0168. https://doi.org/10.1199/tab.0168
  27. Kosakivska I.V., Babenko L.M., Shcherbatiuk M.M., Vedenicheva N.P. Voytenko L.V., Vasyuk V.A. 2016. Phytohormones during growth and development of Polypodiophyta. Advances in Biology & Earth Sciences, 1(1): 26–44.
  28. Kosakivska I.V., Vasyuk V.A., Voytenko L.V. 2018. Reports of the National Academy of Sciences of Ukraine, 12: 79–86. https://doi.org/10.15407/dopovidi2018.12.079
  29. Lo S.F., Yang S.Y., Chen K.T., Hsing Y.I., Zeevaart J.A., Chen L.J., Yu S.M. 2008. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell, 20(10): 2603–2618. https://doi.org/10.1105/tpc.108.060913
  30. Menéndez V., Villacorta N.F., Revilla M.A., Gotor V., Bernard P., Fernández H. 2006a. Exogenous and endogenous growth regulators on apogamy in Dryopteris affinis (Lowe) Fraser-Jenkins sp. [ssp.] affinis. Plant Cell Reports, 25(2): 85–91. https://doi.org/10.1007/s00299-005-0041-1
  31. Menéndez V., Revilla M.A., Bernard P., Gotor V., Fernández H. 2006b. Gibberellins and antheridiogen on sex in Blechnum spicant L. Plant Cell Reports, 25: 1104–1110. https://doi.org/10.1007/s00299-006-0149-y
  32. Menéndez V., Revilla M.A., Fal M.A., Fernández H. 2009. The effect of cytokinins on growth and sexual organ development in the gametophyte of Blechnum spicant L. Plant Cell, Tissue and Organ Culture, 96: 245–250. https://doi.org/10.1007/s11240-008-9481-y
  33. Menéndez V., Arbesú R., Somer M., Revilla A., Fernández H. 2011a. From spore to sporophyte: how to proceed in vitro. In: Working with Ferns: Issues and Applications. Eds H. Fernández, A. Kumar, A. Revilla. New York. Dordrecht; Heidelberg; London: Springer, pp. 97–110. https://doi.org/10.1007/978-1-4419-7162-3_7
  34. Menéndez V., Abul Y., Bohanec B., Lafont F., Fernández H. 2011b. The effect of exogenous and endogenous phytohormones on the in vitro development of gametophyte and sporophyte in Asplenium nidus L. Acta Physiologiae Plantarum, 33: 2493–2500. https://doi.org/10.1007/s11738-011-0794-9
  35. Naramoto S. 2017. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport. Current Opinion in Plant Biology, 40: 8–14. https://doi.org/10.1016/j.pbi.2017.06.012
  36. Radojicic A., Li X., Zhang Y. 2018. Salicylic acid: A dou bleedged sword for programed cell death in plants. Frontiers in Plant Science, 9, Article 1133. https://doi.org/10.3389/fpls.2018.01133
  37. Raghavan V. 1989. Developmental biology of fern gametophytes. Cambridge: Cambridge University Press, 361 pp. https://doi.org/10.1017/CBO9780511529757
  38. Romanenko K.O., Babenko L.M., Vasheka O.V., Romanenko P.O., Kosakivska I.V. 2018. Reports of the National Academy of Sciences of Ukraine, 11: 96–105. https://doi.org/10.15407/dopovidi2018.11.096
  39. Sah S.K., Reddy K.R., Li J. 2016. Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7: 1–26. https://doi.org/10.3389/fpls.2016.00571
  40. Schaller G.E., Street I.H., Kieber J.J. 2014. Cytokinin and the cell cycle.Current Opinion in Plant Biology, 21: 7–15. https://doi.org/10.1016/j.pbi.2014.05.015
  41. Sheffield E. 2008. Alternation of generations. In: Biology and evolution of ferns and lycophytes. Ed. T.A. Ranker, C.H. Haufler. Cambridge: Cambridge University Press, pp. 49–74. https://doi.org/10.1093/aob/mcp194
  42. Tanaka J., Yano K., Aya K., Hirano K., Takehara S., Koketsu E., Ordonio R.L., Park S.H., Nakajima M., Ueguchi-Tanaka M., Matsuoka M. 2014. Antheridiogen determines sex in ferns via a spatiotemporally split gibberellin synthesis pathway. Science, 346(6208): 469–473. https://doi.org/10.1126/science.1259923
  43. Vedenicheva N.P., Kosakivska I.V. 2017. Cytokinins as regulators of plant ontogenesis under different growth conditions. Kyiv: Nash Format, 200 pp.
  44. Vedenicheva N.P., Kosakivska I.V. 2018. Endogenous cytokinins dynamics during development of sporophytes of perennial ferns Dryopteris filix-mas and Polystichum aculeatum (Dryopteridaceae). Ukrainian Botanical Journal, 75(4): 384–391. https://doi.org/10.15407/ukrbotj75.04.384
  45. Vasjuk V.A., Kosakivska I.V. 2015. Ukrainian Botanical Journal, 72(1): 65–73. https://doi.org/10.15407/ukrbotj72.01.065
  46. Voytenko L.V., Kosakivska I.V. 2016. The bulletin of the Kharkiv national agricultural university of V.V. Dokuchaeva, 1(37): 27–41.
  47. Warne T.R., Hickok L.G. 1991. Control of sexual development in gametophytes of Ceratopteris richardii: antheridiogen and abscisic acid. Botanical Gazette (Chicago), 152: 148–153. https://doi.org/10.1086/337874
  48. Wells D.M., Laplaze L., Bennett M.J., Vernoux T. 2013. Biosensors for phytohormone quantification: challenges, solutions, and opportunities. Trends in Plant Sciences, 18(5): 244–249. https://doi.org/10.1016/j.tplants.2012.12.005
  49. Zia M., Riaz-ur-Rehman, Chaudhary M.F. 2007. Hormonal regulation for callogenesis and organogenesis of Artemisia absinthium L. African Journal Biotechnology, 6(16): 1874–1878. https://doi.org/10.5897/AJB2007.000-2281